#include "path-search.hpp" #include "object.hpp" #include "compat/math.hpp" #include #include #include namespace floormat { template using bbox = path_search::bbox; namespace { constexpr auto chunk_size = iTILE_SIZE2 * TILE_MAX_DIM; constexpr auto div = Vector2i(path_search::subdivide_factor); constexpr auto div_size = path_search::div_size; constexpr auto min_size = path_search::min_size; constexpr auto tile_start = Vector2i(iTILE_SIZE2/-2); constexpr auto inf =- (uint32_t)-1; template requires std::is_arithmetic_v constexpr bbox bbox_union(bbox bb, Vector2i coord, Vector2b offset, Vector2ub size) { auto center = coord * iTILE_SIZE2 + Vector2i(offset); auto min = center - Vector2i(size / 2); auto max = center + Vector2i(size); using Vec = VectorTypeFor<2, T>; return { .min = Math::min(Vec(bb.min), Vec(min)), .max = Math::max(Vec(bb.max), Vec(max)), }; } template requires std::is_arithmetic_v constexpr bbox bbox_union(bbox bb1, bbox bb2) { return { Math::min(bb1.min, bb2.min), Math::max(bb1.max, bb2.max) }; } constexpr auto get_bbox(chunk_coords_ ch_1, local_coords pos1, Vector2b off1, chunk_coords_ ch_2, local_coords pos2, Vector2b off2, Vector2ub size, uint32_t dist0) { auto c = (Vector2i(ch_2.x, ch_2.y) - Vector2i(ch_1.x, ch_1.y)) * chunk_size; auto t = (Vector2i(pos2) - Vector2i(pos1)) * iTILE_SIZE2; auto o = Vector2i(off2) - Vector2i(off1); auto cto = Vector2i(c + t + o); auto dist = Math::max(1u, (uint32_t)Math::ceil(Vector2(cto).length())); auto center0 = Vector2i(pos1) * iTILE_SIZE2 + Vector2i(off1); auto min0 = center0 - Vector2i(size/2u), max0 = min0 + Vector2i(size); auto min1 = min0 + cto, max1 = max0 + cto; return Pair, uint32_t>{ { .min = Vector2(Math::min(min0, min1)), .max = Vector2(Math::max(max0, max1)) }, dist0 + dist, }; }; constexpr auto dirs = [] constexpr { struct pair { Vector2i dir; uint32_t len; }; constexpr auto len1 = div_size; constexpr auto len2 = (uint32_t)(math::sqrt((float)len1.dot()) + 0.5f); // NOLINT std::array array = {{ { { -1, -1 }, len2 }, { { 1, 1 }, len2 }, { { -1, 1 }, len2 }, { { 1, -1 }, len2 }, { { -1, 0 }, len1.x() }, { { 0, -1 }, len1.y() }, { { 1, 0 }, len1.x() }, { { 0, 1 }, len1.y() }, }}; for (auto& [vec, len] : array) vec *= div_size; #if 0 for (auto i = 0uz; i < array.size(); i++) for (auto j = 0uz; j < i; j++) fm_assert(array[i].dir != array[j].dir); #endif return array; }(); template requires std::is_arithmetic_v constexpr bbox bbox_from_pos(Math::Vector<2, T> pos, Vector2b offset, Vector2ub size) { using Vec = VectorTypeFor<2, T>; constexpr auto tile_size = Vec(iTILE_SIZE2); const auto vec = pos * tile_size + Vec(offset); const auto bb = bbox{vec - Vec(size >> 1), vec + Vec(size)}; return bb; } } // namespace size_t astar::hash_op::operator()(position coord) const { static_assert(sizeof(global_coords) == 8); if constexpr(sizeof nullptr > 4) return fnvhash_64(&coord, sizeof coord); else return fnvhash_32(&coord, sizeof coord); } path_search_result path_search::Dijkstra(world& w, Vector2ub own_size, object_id own_id, global_coords from, Vector2b from_offset, global_coords to, Vector2b to_offset, const pred& p) { auto heap_comparator = [&A = astar](uint32_t a, uint32_t b) { fm_debug_assert(std::max(a, b) < A.nodes.size()); const auto& n1 = A.nodes[a]; const auto& n2 = A.nodes[b]; return n2.dist < n1.dist; }; own_size = Math::max(own_size, Vector2ub(min_size)); if (from.z() != to.z()) [[unlikely]] return {}; // todo try removing this eventually if (from.z() != 0) [[unlikely]] return {}; if (!is_passable(w, from, from_offset, own_size, own_id, p)) return {}; if (!is_passable(w, to, to_offset, own_size, own_id, p)) return {}; astar.clear(); fm_debug_assert(astar.nodes.empty()); const auto start_bbox = bbox_from_pos(Vector2(from.local()), from_offset, own_size); const auto from_offset_len = Math::max(1u, (uint32_t)Math::ceil(Vector2(from_offset).length())); path_search_result result; fm_debug_assert(result._node); // todo auto& path = result._node->vec; path.clear(); astar.indexes[{from, from_offset}] = 0; astar.nodes.push_back({.dist = 0, .coord = from, .offset = from_offset }); astar.Q.push_back(0); std::push_heap(astar.Q.begin(), astar.Q.end(), heap_comparator); if (!from_offset.isZero()) { auto bb = bbox_union(start_bbox, Vector2i(from.local()), {}, own_size); if (is_passable(w, chunk_coords_{from}, bb, own_id, p)) { astar.indexes[{from, {}}] = 1; astar.nodes.push_back({.dist = from_offset_len, .prev = 0, .coord = from, .offset = {}}); astar.Q.push_back(1); std::push_heap(astar.Q.begin(), astar.Q.end(), heap_comparator); } } // todo... return result; } path_search_result path_search::Dijkstra(world& w, const object& obj, global_coords to, Vector2b to_offset, const pred& p) { fm_assert(obj.bbox_offset.isZero()); return Dijkstra(w, obj.bbox_size, obj.id, obj.coord, obj.offset, to, to_offset, p); } } // namespace floormat