diff options
Diffstat (limited to 'eigen/Eigen/src/Cholesky/LDLT.h')
-rw-r--r-- | eigen/Eigen/src/Cholesky/LDLT.h | 267 |
1 files changed, 162 insertions, 105 deletions
diff --git a/eigen/Eigen/src/Cholesky/LDLT.h b/eigen/Eigen/src/Cholesky/LDLT.h index abd30bd..9b4fdb4 100644 --- a/eigen/Eigen/src/Cholesky/LDLT.h +++ b/eigen/Eigen/src/Cholesky/LDLT.h @@ -13,7 +13,7 @@ #ifndef EIGEN_LDLT_H #define EIGEN_LDLT_H -namespace Eigen { +namespace Eigen { namespace internal { template<typename MatrixType, int UpLo> struct LDLT_Traits; @@ -28,8 +28,8 @@ namespace internal { * * \brief Robust Cholesky decomposition of a matrix with pivoting * - * \param MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition - * \param UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. + * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition + * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. * The other triangular part won't be read. * * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite @@ -43,7 +43,9 @@ namespace internal { * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky * decomposition to determine whether a system of equations has a solution. * - * \sa MatrixBase::ldlt(), class LLT + * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. + * + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT */ template<typename _MatrixType, int _UpLo> class LDLT { @@ -52,15 +54,15 @@ template<typename _MatrixType, int _UpLo> class LDLT enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, - Options = MatrixType::Options & ~RowMajorBit, // these are the options for the TmpMatrixType, we need a ColMajor matrix here! MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, UpLo = _UpLo }; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> TmpMatrixType; + typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 + typedef typename MatrixType::StorageIndex StorageIndex; + typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; @@ -72,11 +74,11 @@ template<typename _MatrixType, int _UpLo> class LDLT * The default constructor is useful in cases in which the user intends to * perform decompositions via LDLT::compute(const MatrixType&). */ - LDLT() - : m_matrix(), - m_transpositions(), + LDLT() + : m_matrix(), + m_transpositions(), m_sign(internal::ZeroSign), - m_isInitialized(false) + m_isInitialized(false) {} /** \brief Default Constructor with memory preallocation @@ -85,7 +87,7 @@ template<typename _MatrixType, int _UpLo> class LDLT * according to the specified problem \a size. * \sa LDLT() */ - LDLT(Index size) + explicit LDLT(Index size) : m_matrix(size, size), m_transpositions(size), m_temporary(size), @@ -96,16 +98,35 @@ template<typename _MatrixType, int _UpLo> class LDLT /** \brief Constructor with decomposition * * This calculates the decomposition for the input \a matrix. + * * \sa LDLT(Index size) */ - LDLT(const MatrixType& matrix) + template<typename InputType> + explicit LDLT(const EigenBase<InputType>& matrix) : m_matrix(matrix.rows(), matrix.cols()), m_transpositions(matrix.rows()), m_temporary(matrix.rows()), m_sign(internal::ZeroSign), m_isInitialized(false) { - compute(matrix); + compute(matrix.derived()); + } + + /** \brief Constructs a LDLT factorization from a given matrix + * + * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. + * + * \sa LDLT(const EigenBase&) + */ + template<typename InputType> + explicit LDLT(EigenBase<InputType>& matrix) + : m_matrix(matrix.derived()), + m_transpositions(matrix.rows()), + m_temporary(matrix.rows()), + m_sign(internal::ZeroSign), + m_isInitialized(false) + { + compute(matrix.derived()); } /** Clear any existing decomposition @@ -151,13 +172,6 @@ template<typename _MatrixType, int _UpLo> class LDLT eigen_assert(m_isInitialized && "LDLT is not initialized."); return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; } - - #ifdef EIGEN2_SUPPORT - inline bool isPositiveDefinite() const - { - return isPositive(); - } - #endif /** \returns true if the matrix is negative (semidefinite) */ inline bool isNegative(void) const @@ -173,37 +187,38 @@ template<typename _MatrixType, int _UpLo> class LDLT * \note_about_checking_solutions * * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ - * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, + * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. * - * \sa MatrixBase::ldlt() + * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() */ template<typename Rhs> - inline const internal::solve_retval<LDLT, Rhs> + inline const Solve<LDLT, Rhs> solve(const MatrixBase<Rhs>& b) const { eigen_assert(m_isInitialized && "LDLT is not initialized."); eigen_assert(m_matrix.rows()==b.rows() && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval<LDLT, Rhs>(*this, b.derived()); + return Solve<LDLT, Rhs>(*this, b.derived()); } - #ifdef EIGEN2_SUPPORT - template<typename OtherDerived, typename ResultType> - bool solve(const MatrixBase<OtherDerived>& b, ResultType *result) const - { - *result = this->solve(b); - return true; - } - #endif - template<typename Derived> bool solveInPlace(MatrixBase<Derived> &bAndX) const; - LDLT& compute(const MatrixType& matrix); + template<typename InputType> + LDLT& compute(const EigenBase<InputType>& matrix); + + /** \returns an estimate of the reciprocal condition number of the matrix of + * which \c *this is the LDLT decomposition. + */ + RealScalar rcond() const + { + eigen_assert(m_isInitialized && "LDLT is not initialized."); + return internal::rcond_estimate_helper(m_l1_norm, *this); + } template <typename Derived> LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); @@ -220,6 +235,13 @@ template<typename _MatrixType, int _UpLo> class LDLT MatrixType reconstructedMatrix() const; + /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. + * + * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: + * \code x = decomposition.adjoint().solve(b) \endcode + */ + const LDLT& adjoint() const { return *this; }; + inline Index rows() const { return m_matrix.rows(); } inline Index cols() const { return m_matrix.cols(); } @@ -231,11 +253,16 @@ template<typename _MatrixType, int _UpLo> class LDLT ComputationInfo info() const { eigen_assert(m_isInitialized && "LDLT is not initialized."); - return Success; + return m_info; } + #ifndef EIGEN_PARSED_BY_DOXYGEN + template<typename RhsType, typename DstType> + void _solve_impl(const RhsType &rhs, DstType &dst) const; + #endif + protected: - + static void check_template_parameters() { EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); @@ -248,10 +275,12 @@ template<typename _MatrixType, int _UpLo> class LDLT * is not stored), and the diagonal entries correspond to D. */ MatrixType m_matrix; + RealScalar m_l1_norm; TranspositionType m_transpositions; TmpMatrixType m_temporary; internal::SignMatrix m_sign; bool m_isInitialized; + ComputationInfo m_info; }; namespace internal { @@ -266,15 +295,17 @@ template<> struct ldlt_inplace<Lower> using std::abs; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; + typedef typename TranspositionType::StorageIndex IndexType; eigen_assert(mat.rows()==mat.cols()); const Index size = mat.rows(); + bool found_zero_pivot = false; + bool ret = true; if (size <= 1) { transpositions.setIdentity(); - if (numext::real(mat.coeff(0,0)) > 0) sign = PositiveSemiDef; - else if (numext::real(mat.coeff(0,0)) < 0) sign = NegativeSemiDef; + if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; + else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; else sign = ZeroSign; return true; } @@ -286,7 +317,7 @@ template<> struct ldlt_inplace<Lower> mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); index_of_biggest_in_corner += k; - transpositions.coeffRef(k) = index_of_biggest_in_corner; + transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); if(k != index_of_biggest_in_corner) { // apply the transposition while taking care to consider only @@ -295,7 +326,7 @@ template<> struct ldlt_inplace<Lower> mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); - for(int i=k+1;i<index_of_biggest_in_corner;++i) + for(Index i=k+1;i<index_of_biggest_in_corner;++i) { Scalar tmp = mat.coeffRef(i,k); mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); @@ -321,26 +352,44 @@ template<> struct ldlt_inplace<Lower> if(rs>0) A21.noalias() -= A20 * temp.head(k); } - + // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot - // was smaller than the cutoff value. However, soince LDLT is not rank-revealing - // we should only make sure we do not introduce INF or NaN values. - // LAPACK also uses 0 as the cutoff value. + // was smaller than the cutoff value. However, since LDLT is not rank-revealing + // we should only make sure that we do not introduce INF or NaN values. + // Remark that LAPACK also uses 0 as the cutoff value. RealScalar realAkk = numext::real(mat.coeffRef(k,k)); - if((rs>0) && (abs(realAkk) > RealScalar(0))) + bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); + + if(k==0 && !pivot_is_valid) + { + // The entire diagonal is zero, there is nothing more to do + // except filling the transpositions, and checking whether the matrix is zero. + sign = ZeroSign; + for(Index j = 0; j<size; ++j) + { + transpositions.coeffRef(j) = IndexType(j); + ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); + } + return ret; + } + + if((rs>0) && pivot_is_valid) A21 /= realAkk; + if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed + else if(!pivot_is_valid) found_zero_pivot = true; + if (sign == PositiveSemiDef) { - if (realAkk < 0) sign = Indefinite; + if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; } else if (sign == NegativeSemiDef) { - if (realAkk > 0) sign = Indefinite; + if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; } else if (sign == ZeroSign) { - if (realAkk > 0) sign = PositiveSemiDef; - else if (realAkk < 0) sign = NegativeSemiDef; + if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; + else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; } } - return true; + return ret; } // Reference for the algorithm: Davis and Hager, "Multiple Rank @@ -356,7 +405,6 @@ template<> struct ldlt_inplace<Lower> using numext::isfinite; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; const Index size = mat.rows(); eigen_assert(mat.cols() == size && w.size()==size); @@ -420,16 +468,16 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> { typedef const TriangularView<const MatrixType, UnitLower> MatrixL; typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m; } - static inline MatrixU getU(const MatrixType& m) { return m.adjoint(); } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } }; template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> { typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; - static inline MatrixL getL(const MatrixType& m) { return m.adjoint(); } - static inline MatrixU getU(const MatrixType& m) { return m; } + static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } + static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } }; } // end namespace internal @@ -437,21 +485,35 @@ template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix */ template<typename MatrixType, int _UpLo> -LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const MatrixType& a) +template<typename InputType> +LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) { check_template_parameters(); - + eigen_assert(a.rows()==a.cols()); const Index size = a.rows(); - m_matrix = a; + m_matrix = a.derived(); + + // Compute matrix L1 norm = max abs column sum. + m_l1_norm = RealScalar(0); + // TODO move this code to SelfAdjointView + for (Index col = 0; col < size; ++col) { + RealScalar abs_col_sum; + if (_UpLo == Lower) + abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); + else + abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); + if (abs_col_sum > m_l1_norm) + m_l1_norm = abs_col_sum; + } m_transpositions.resize(size); m_isInitialized = false; m_temporary.resize(size); m_sign = internal::ZeroSign; - internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign); + m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; m_isInitialized = true; return *this; @@ -466,18 +528,19 @@ template<typename MatrixType, int _UpLo> template<typename Derived> LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) { + typedef typename TranspositionType::StorageIndex IndexType; const Index size = w.rows(); if (m_isInitialized) { eigen_assert(m_matrix.rows()==size); } else - { + { m_matrix.resize(size,size); m_matrix.setZero(); m_transpositions.resize(size); for (Index i = 0; i < size; i++) - m_transpositions.coeffRef(i) = i; + m_transpositions.coeffRef(i) = IndexType(i); m_temporary.resize(size); m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; m_isInitialized = true; @@ -488,53 +551,45 @@ LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Deri return *this; } -namespace internal { -template<typename _MatrixType, int _UpLo, typename Rhs> -struct solve_retval<LDLT<_MatrixType,_UpLo>, Rhs> - : solve_retval_base<LDLT<_MatrixType,_UpLo>, Rhs> +#ifndef EIGEN_PARSED_BY_DOXYGEN +template<typename _MatrixType, int _UpLo> +template<typename RhsType, typename DstType> +void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const { - typedef LDLT<_MatrixType,_UpLo> LDLTType; - EIGEN_MAKE_SOLVE_HELPERS(LDLTType,Rhs) - - template<typename Dest> void evalTo(Dest& dst) const + eigen_assert(rhs.rows() == rows()); + // dst = P b + dst = m_transpositions * rhs; + + // dst = L^-1 (P b) + matrixL().solveInPlace(dst); + + // dst = D^-1 (L^-1 P b) + // more precisely, use pseudo-inverse of D (see bug 241) + using std::abs; + const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); + // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon + // as motivated by LAPACK's xGELSS: + // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); + // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest + // diagonal element is not well justified and leads to numerical issues in some cases. + // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. + RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); + + for (Index i = 0; i < vecD.size(); ++i) { - eigen_assert(rhs().rows() == dec().matrixLDLT().rows()); - // dst = P b - dst = dec().transpositionsP() * rhs(); - - // dst = L^-1 (P b) - dec().matrixL().solveInPlace(dst); - - // dst = D^-1 (L^-1 P b) - // more precisely, use pseudo-inverse of D (see bug 241) - using std::abs; - using std::max; - typedef typename LDLTType::MatrixType MatrixType; - typedef typename LDLTType::RealScalar RealScalar; - const typename Diagonal<const MatrixType>::RealReturnType vectorD(dec().vectorD()); - // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon - // as motivated by LAPACK's xGELSS: - // RealScalar tolerance = (max)(vectorD.array().abs().maxCoeff() *NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); - // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest - // diagonal element is not well justified and to numerical issues in some cases. - // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. - RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); - - for (Index i = 0; i < vectorD.size(); ++i) { - if(abs(vectorD(i)) > tolerance) - dst.row(i) /= vectorD(i); - else - dst.row(i).setZero(); - } + if(abs(vecD(i)) > tolerance) + dst.row(i) /= vecD(i); + else + dst.row(i).setZero(); + } - // dst = L^-T (D^-1 L^-1 P b) - dec().matrixU().solveInPlace(dst); + // dst = L^-T (D^-1 L^-1 P b) + matrixU().solveInPlace(dst); - // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b - dst = dec().transpositionsP().transpose() * dst; - } -}; + // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b + dst = m_transpositions.transpose() * dst; } +#endif /** \internal use x = ldlt_object.solve(x); * @@ -588,6 +643,7 @@ MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa MatrixBase::ldlt() */ template<typename MatrixType, unsigned int UpLo> inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> @@ -598,6 +654,7 @@ SelfAdjointView<MatrixType, UpLo>::ldlt() const /** \cholesky_module * \returns the Cholesky decomposition with full pivoting without square root of \c *this + * \sa SelfAdjointView::ldlt() */ template<typename Derived> inline const LDLT<typename MatrixBase<Derived>::PlainObject> |