diff options
Diffstat (limited to 'eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h')
-rw-r--r-- | eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h | 145 |
1 files changed, 0 insertions, 145 deletions
diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h b/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h deleted file mode 100644 index 19b8582..0000000 --- a/eigen/Eigen/src/Eigen2Support/Geometry/Rotation2D.h +++ /dev/null @@ -1,145 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \class Rotation2D - * - * \brief Represents a rotation/orientation in a 2 dimensional space. - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * - * This class is equivalent to a single scalar representing a counter clock wise rotation - * as a single angle in radian. It provides some additional features such as the automatic - * conversion from/to a 2x2 rotation matrix. Moreover this class aims to provide a similar - * interface to Quaternion in order to facilitate the writing of generic algorithms - * dealing with rotations. - * - * \sa class Quaternion, class Transform - */ -template<typename _Scalar> struct ei_traits<Rotation2D<_Scalar> > -{ - typedef _Scalar Scalar; -}; - -template<typename _Scalar> -class Rotation2D : public RotationBase<Rotation2D<_Scalar>,2> -{ - typedef RotationBase<Rotation2D<_Scalar>,2> Base; - -public: - - using Base::operator*; - - enum { Dim = 2 }; - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - typedef Matrix<Scalar,2,1> Vector2; - typedef Matrix<Scalar,2,2> Matrix2; - -protected: - - Scalar m_angle; - -public: - - /** Construct a 2D counter clock wise rotation from the angle \a a in radian. */ - inline Rotation2D(Scalar a) : m_angle(a) {} - - /** \returns the rotation angle */ - inline Scalar angle() const { return m_angle; } - - /** \returns a read-write reference to the rotation angle */ - inline Scalar& angle() { return m_angle; } - - /** \returns the inverse rotation */ - inline Rotation2D inverse() const { return -m_angle; } - - /** Concatenates two rotations */ - inline Rotation2D operator*(const Rotation2D& other) const - { return m_angle + other.m_angle; } - - /** Concatenates two rotations */ - inline Rotation2D& operator*=(const Rotation2D& other) - { return m_angle += other.m_angle; return *this; } - - /** Applies the rotation to a 2D vector */ - Vector2 operator* (const Vector2& vec) const - { return toRotationMatrix() * vec; } - - template<typename Derived> - Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m); - Matrix2 toRotationMatrix(void) const; - - /** \returns the spherical interpolation between \c *this and \a other using - * parameter \a t. It is in fact equivalent to a linear interpolation. - */ - inline Rotation2D slerp(Scalar t, const Rotation2D& other) const - { return m_angle * (1-t) + other.angle() * t; } - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template<typename NewScalarType> - inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const - { return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template<typename OtherScalarType> - inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other) - { - m_angle = Scalar(other.angle()); - } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = precision<Scalar>()) const - { return ei_isApprox(m_angle,other.m_angle, prec); } -}; - -/** \ingroup Geometry_Module - * single precision 2D rotation type */ -typedef Rotation2D<float> Rotation2Df; -/** \ingroup Geometry_Module - * double precision 2D rotation type */ -typedef Rotation2D<double> Rotation2Dd; - -/** Set \c *this from a 2x2 rotation matrix \a mat. - * In other words, this function extract the rotation angle - * from the rotation matrix. - */ -template<typename Scalar> -template<typename Derived> -Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) -{ - EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE) - m_angle = ei_atan2(mat.coeff(1,0), mat.coeff(0,0)); - return *this; -} - -/** Constructs and \returns an equivalent 2x2 rotation matrix. - */ -template<typename Scalar> -typename Rotation2D<Scalar>::Matrix2 -Rotation2D<Scalar>::toRotationMatrix(void) const -{ - Scalar sinA = ei_sin(m_angle); - Scalar cosA = ei_cos(m_angle); - return (Matrix2() << cosA, -sinA, sinA, cosA).finished(); -} - -} // end namespace Eigen |