diff options
Diffstat (limited to 'eigen/Eigen/src/Geometry/AngleAxis.h')
-rw-r--r-- | eigen/Eigen/src/Geometry/AngleAxis.h | 85 |
1 files changed, 46 insertions, 39 deletions
diff --git a/eigen/Eigen/src/Geometry/AngleAxis.h b/eigen/Eigen/src/Geometry/AngleAxis.h index a8d3cdc..0af3c1b 100644 --- a/eigen/Eigen/src/Geometry/AngleAxis.h +++ b/eigen/Eigen/src/Geometry/AngleAxis.h @@ -69,57 +69,61 @@ protected: public: /** Default constructor without initialization. */ - AngleAxis() {} + EIGEN_DEVICE_FUNC AngleAxis() {} /** Constructs and initialize the angle-axis rotation from an \a angle in radian * and an \a axis which \b must \b be \b normalized. * * \warning If the \a axis vector is not normalized, then the angle-axis object * represents an invalid rotation. */ template<typename Derived> + EIGEN_DEVICE_FUNC inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {} - /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */ - template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } + /** Constructs and initialize the angle-axis rotation from a quaternion \a q. + * This function implicitly normalizes the quaternion \a q. + */ + template<typename QuatDerived> + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; } /** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */ template<typename Derived> - inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; } /** \returns the value of the rotation angle in radian */ - Scalar angle() const { return m_angle; } + EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; } /** \returns a read-write reference to the stored angle in radian */ - Scalar& angle() { return m_angle; } + EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; } /** \returns the rotation axis */ - const Vector3& axis() const { return m_axis; } + EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; } /** \returns a read-write reference to the stored rotation axis. * * \warning The rotation axis must remain a \b unit vector. */ - Vector3& axis() { return m_axis; } + EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; } /** Concatenates two rotations */ - inline QuaternionType operator* (const AngleAxis& other) const + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const { return QuaternionType(*this) * QuaternionType(other); } /** Concatenates two rotations */ - inline QuaternionType operator* (const QuaternionType& other) const + EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const { return QuaternionType(*this) * other; } /** Concatenates two rotations */ - friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) + friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b) { return a * QuaternionType(b); } /** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */ - AngleAxis inverse() const + EIGEN_DEVICE_FUNC AngleAxis inverse() const { return AngleAxis(-m_angle, m_axis); } template<class QuatDerived> - AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); + EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q); template<typename Derived> - AngleAxis& operator=(const MatrixBase<Derived>& m); + EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m); template<typename Derived> - AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); - Matrix3 toRotationMatrix(void) const; + EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m); + EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const; /** \returns \c *this with scalar type casted to \a NewScalarType * @@ -127,24 +131,24 @@ public: * then this function smartly returns a const reference to \c *this. */ template<typename NewScalarType> - inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const + EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const { return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); } /** Copy constructor with scalar type conversion */ template<typename OtherScalarType> - inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) + EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other) { m_axis = other.axis().template cast<Scalar>(); m_angle = Scalar(other.angle()); } - static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } + EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ - bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const { return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); } }; @@ -156,29 +160,32 @@ typedef AngleAxis<float> AngleAxisf; typedef AngleAxis<double> AngleAxisd; /** Set \c *this from a \b unit quaternion. - * The axis is normalized. + * + * The resulting axis is normalized, and the computed angle is in the [0,pi] range. * - * \warning As any other method dealing with quaternion, if the input quaternion - * is not normalized then the result is undefined. + * This function implicitly normalizes the quaternion \a q. */ template<typename Scalar> template<typename QuatDerived> -AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) +EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q) { - using std::acos; - using std::min; - using std::max; - using std::sqrt; - Scalar n2 = q.vec().squaredNorm(); - if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision()) + EIGEN_USING_STD_MATH(atan2) + EIGEN_USING_STD_MATH(abs) + Scalar n = q.vec().norm(); + if(n<NumTraits<Scalar>::epsilon()) + n = q.vec().stableNorm(); + + if (n != Scalar(0)) { - m_angle = Scalar(0); - m_axis << Scalar(1), Scalar(0), Scalar(0); + m_angle = Scalar(2)*atan2(n, abs(q.w())); + if(q.w() < 0) + n = -n; + m_axis = q.vec() / n; } else { - m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1))); - m_axis = q.vec() / sqrt(n2); + m_angle = Scalar(0); + m_axis << Scalar(1), Scalar(0), Scalar(0); } return *this; } @@ -187,7 +194,7 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived */ template<typename Scalar> template<typename Derived> -AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) +EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) { // Since a direct conversion would not be really faster, // let's use the robust Quaternion implementation: @@ -199,7 +206,7 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat) **/ template<typename Scalar> template<typename Derived> -AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) +EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat) { return *this = QuaternionType(mat); } @@ -208,10 +215,10 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derive */ template<typename Scalar> typename AngleAxis<Scalar>::Matrix3 -AngleAxis<Scalar>::toRotationMatrix(void) const +EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const { - using std::sin; - using std::cos; + EIGEN_USING_STD_MATH(sin) + EIGEN_USING_STD_MATH(cos) Matrix3 res; Vector3 sin_axis = sin(m_angle) * m_axis; Scalar c = cos(m_angle); |