summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/Geometry
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/Geometry')
-rw-r--r--eigen/Eigen/src/Geometry/AlignedBox.h98
-rw-r--r--eigen/Eigen/src/Geometry/AngleAxis.h85
-rw-r--r--eigen/Eigen/src/Geometry/CMakeLists.txt8
-rw-r--r--eigen/Eigen/src/Geometry/EulerAngles.h22
-rw-r--r--eigen/Eigen/src/Geometry/Homogeneous.h290
-rw-r--r--eigen/Eigen/src/Geometry/Hyperplane.h64
-rw-r--r--eigen/Eigen/src/Geometry/OrthoMethods.h58
-rw-r--r--eigen/Eigen/src/Geometry/ParametrizedLine.h99
-rw-r--r--eigen/Eigen/src/Geometry/Quaternion.h225
-rw-r--r--eigen/Eigen/src/Geometry/Rotation2D.h85
-rw-r--r--eigen/Eigen/src/Geometry/RotationBase.h48
-rw-r--r--eigen/Eigen/src/Geometry/Scaling.h38
-rw-r--r--eigen/Eigen/src/Geometry/Transform.h274
-rw-r--r--eigen/Eigen/src/Geometry/Translation.h60
-rw-r--r--eigen/Eigen/src/Geometry/Umeyama.h19
-rw-r--r--eigen/Eigen/src/Geometry/arch/CMakeLists.txt6
-rw-r--r--eigen/Eigen/src/Geometry/arch/Geometry_SSE.h56
17 files changed, 973 insertions, 562 deletions
diff --git a/eigen/Eigen/src/Geometry/AlignedBox.h b/eigen/Eigen/src/Geometry/AlignedBox.h
index 7e1cd9e..c902d8f 100644
--- a/eigen/Eigen/src/Geometry/AlignedBox.h
+++ b/eigen/Eigen/src/Geometry/AlignedBox.h
@@ -34,10 +34,11 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
enum { AmbientDimAtCompileTime = _AmbientDim };
typedef _Scalar Scalar;
typedef NumTraits<Scalar> ScalarTraits;
- typedef DenseIndex Index;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef typename ScalarTraits::Real RealScalar;
- typedef typename ScalarTraits::NonInteger NonInteger;
+ typedef typename ScalarTraits::NonInteger NonInteger;
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
+ typedef CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> VectorTypeSum;
/** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */
enum CornerType
@@ -61,77 +62,76 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** Default constructor initializing a null box. */
- inline AlignedBox()
- { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); }
+ EIGEN_DEVICE_FUNC inline AlignedBox()
+ { if (EIGEN_CONST_CONDITIONAL(AmbientDimAtCompileTime!=Dynamic)) setEmpty(); }
/** Constructs a null box with \a _dim the dimension of the ambient space. */
- inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
+ EIGEN_DEVICE_FUNC inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim)
{ setEmpty(); }
/** Constructs a box with extremities \a _min and \a _max.
* \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */
template<typename OtherVectorType1, typename OtherVectorType2>
- inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
+ EIGEN_DEVICE_FUNC inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {}
/** Constructs a box containing a single point \a p. */
template<typename Derived>
- inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
+ EIGEN_DEVICE_FUNC inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min)
{ }
- ~AlignedBox() {}
+ EIGEN_DEVICE_FUNC ~AlignedBox() {}
/** \returns the dimension in which the box holds */
- inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
+ EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); }
/** \deprecated use isEmpty() */
- inline bool isNull() const { return isEmpty(); }
+ EIGEN_DEVICE_FUNC inline bool isNull() const { return isEmpty(); }
/** \deprecated use setEmpty() */
- inline void setNull() { setEmpty(); }
+ EIGEN_DEVICE_FUNC inline void setNull() { setEmpty(); }
/** \returns true if the box is empty.
* \sa setEmpty */
- inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
+ EIGEN_DEVICE_FUNC inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); }
/** Makes \c *this an empty box.
* \sa isEmpty */
- inline void setEmpty()
+ EIGEN_DEVICE_FUNC inline void setEmpty()
{
m_min.setConstant( ScalarTraits::highest() );
m_max.setConstant( ScalarTraits::lowest() );
}
/** \returns the minimal corner */
- inline const VectorType& (min)() const { return m_min; }
+ EIGEN_DEVICE_FUNC inline const VectorType& (min)() const { return m_min; }
/** \returns a non const reference to the minimal corner */
- inline VectorType& (min)() { return m_min; }
+ EIGEN_DEVICE_FUNC inline VectorType& (min)() { return m_min; }
/** \returns the maximal corner */
- inline const VectorType& (max)() const { return m_max; }
+ EIGEN_DEVICE_FUNC inline const VectorType& (max)() const { return m_max; }
/** \returns a non const reference to the maximal corner */
- inline VectorType& (max)() { return m_max; }
+ EIGEN_DEVICE_FUNC inline VectorType& (max)() { return m_max; }
/** \returns the center of the box */
- inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>,
- const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> >
+ EIGEN_DEVICE_FUNC inline const EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(VectorTypeSum, RealScalar, quotient)
center() const
- { return (m_min+m_max)/2; }
+ { return (m_min+m_max)/RealScalar(2); }
/** \returns the lengths of the sides of the bounding box.
* Note that this function does not get the same
* result for integral or floating scalar types: see
*/
- inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const
+ EIGEN_DEVICE_FUNC inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> sizes() const
{ return m_max - m_min; }
/** \returns the volume of the bounding box */
- inline Scalar volume() const
+ EIGEN_DEVICE_FUNC inline Scalar volume() const
{ return sizes().prod(); }
/** \returns an expression for the bounding box diagonal vector
* if the length of the diagonal is needed: diagonal().norm()
* will provide it.
*/
- inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const
+ EIGEN_DEVICE_FUNC inline CwiseBinaryOp< internal::scalar_difference_op<Scalar,Scalar>, const VectorType, const VectorType> diagonal() const
{ return sizes(); }
/** \returns the vertex of the bounding box at the corner defined by
@@ -143,7 +143,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
* For 3D bounding boxes, the following names are added:
* BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil.
*/
- inline VectorType corner(CornerType corner) const
+ EIGEN_DEVICE_FUNC inline VectorType corner(CornerType corner) const
{
EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE);
@@ -161,7 +161,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** \returns a random point inside the bounding box sampled with
* a uniform distribution */
- inline VectorType sample() const
+ EIGEN_DEVICE_FUNC inline VectorType sample() const
{
VectorType r(dim());
for(Index d=0; d<dim(); ++d)
@@ -179,27 +179,27 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** \returns true if the point \a p is inside the box \c *this. */
template<typename Derived>
- inline bool contains(const MatrixBase<Derived>& p) const
+ EIGEN_DEVICE_FUNC inline bool contains(const MatrixBase<Derived>& p) const
{
- typename internal::nested<Derived,2>::type p_n(p.derived());
+ typename internal::nested_eval<Derived,2>::type p_n(p.derived());
return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all();
}
/** \returns true if the box \a b is entirely inside the box \c *this. */
- inline bool contains(const AlignedBox& b) const
+ EIGEN_DEVICE_FUNC inline bool contains(const AlignedBox& b) const
{ return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); }
/** \returns true if the box \a b is intersecting the box \c *this.
* \sa intersection, clamp */
- inline bool intersects(const AlignedBox& b) const
+ EIGEN_DEVICE_FUNC inline bool intersects(const AlignedBox& b) const
{ return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); }
/** Extends \c *this such that it contains the point \a p and returns a reference to \c *this.
* \sa extend(const AlignedBox&) */
template<typename Derived>
- inline AlignedBox& extend(const MatrixBase<Derived>& p)
+ EIGEN_DEVICE_FUNC inline AlignedBox& extend(const MatrixBase<Derived>& p)
{
- typename internal::nested<Derived,2>::type p_n(p.derived());
+ typename internal::nested_eval<Derived,2>::type p_n(p.derived());
m_min = m_min.cwiseMin(p_n);
m_max = m_max.cwiseMax(p_n);
return *this;
@@ -207,7 +207,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** Extends \c *this such that it contains the box \a b and returns a reference to \c *this.
* \sa merged, extend(const MatrixBase&) */
- inline AlignedBox& extend(const AlignedBox& b)
+ EIGEN_DEVICE_FUNC inline AlignedBox& extend(const AlignedBox& b)
{
m_min = m_min.cwiseMin(b.m_min);
m_max = m_max.cwiseMax(b.m_max);
@@ -217,7 +217,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** Clamps \c *this by the box \a b and returns a reference to \c *this.
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersection(), intersects() */
- inline AlignedBox& clamp(const AlignedBox& b)
+ EIGEN_DEVICE_FUNC inline AlignedBox& clamp(const AlignedBox& b)
{
m_min = m_min.cwiseMax(b.m_min);
m_max = m_max.cwiseMin(b.m_max);
@@ -227,20 +227,20 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** Returns an AlignedBox that is the intersection of \a b and \c *this
* \note If the boxes don't intersect, the resulting box is empty.
* \sa intersects(), clamp, contains() */
- inline AlignedBox intersection(const AlignedBox& b) const
+ EIGEN_DEVICE_FUNC inline AlignedBox intersection(const AlignedBox& b) const
{return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); }
/** Returns an AlignedBox that is the union of \a b and \c *this.
* \note Merging with an empty box may result in a box bigger than \c *this.
* \sa extend(const AlignedBox&) */
- inline AlignedBox merged(const AlignedBox& b) const
+ EIGEN_DEVICE_FUNC inline AlignedBox merged(const AlignedBox& b) const
{ return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); }
/** Translate \c *this by the vector \a t and returns a reference to \c *this. */
template<typename Derived>
- inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
+ EIGEN_DEVICE_FUNC inline AlignedBox& translate(const MatrixBase<Derived>& a_t)
{
- const typename internal::nested<Derived,2>::type t(a_t.derived());
+ const typename internal::nested_eval<Derived,2>::type t(a_t.derived());
m_min += t;
m_max += t;
return *this;
@@ -251,28 +251,28 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
* \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&)
*/
template<typename Derived>
- inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
+ EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const;
/** \returns the squared distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&)
*/
- inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
+ EIGEN_DEVICE_FUNC inline Scalar squaredExteriorDistance(const AlignedBox& b) const;
/** \returns the distance between the point \a p and the box \c *this,
* and zero if \a p is inside the box.
* \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&)
*/
template<typename Derived>
- inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
- { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(p))); }
+ EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const
+ { EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(p))); }
/** \returns the distance between the boxes \a b and \c *this,
* and zero if the boxes intersect.
* \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&)
*/
- inline NonInteger exteriorDistance(const AlignedBox& b) const
- { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); }
+ EIGEN_DEVICE_FUNC inline NonInteger exteriorDistance(const AlignedBox& b) const
+ { EIGEN_USING_STD_MATH(sqrt) return sqrt(NonInteger(squaredExteriorDistance(b))); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -280,7 +280,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<AlignedBox,
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AlignedBox,
AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const
{
return typename internal::cast_return_type<AlignedBox,
@@ -289,7 +289,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
+ EIGEN_DEVICE_FUNC inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other)
{
m_min = (other.min)().template cast<Scalar>();
m_max = (other.max)().template cast<Scalar>();
@@ -299,7 +299,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
protected:
@@ -311,9 +311,9 @@ protected:
template<typename Scalar,int AmbientDim>
template<typename Derived>
-inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
+EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const
{
- typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived());
+ typename internal::nested_eval<Derived,2*AmbientDim>::type p(a_p.derived());
Scalar dist2(0);
Scalar aux;
for (Index k=0; k<dim(); ++k)
@@ -333,7 +333,7 @@ inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const Matri
}
template<typename Scalar,int AmbientDim>
-inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
+EIGEN_DEVICE_FUNC inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const
{
Scalar dist2(0);
Scalar aux;
diff --git a/eigen/Eigen/src/Geometry/AngleAxis.h b/eigen/Eigen/src/Geometry/AngleAxis.h
index a8d3cdc..0af3c1b 100644
--- a/eigen/Eigen/src/Geometry/AngleAxis.h
+++ b/eigen/Eigen/src/Geometry/AngleAxis.h
@@ -69,57 +69,61 @@ protected:
public:
/** Default constructor without initialization. */
- AngleAxis() {}
+ EIGEN_DEVICE_FUNC AngleAxis() {}
/** Constructs and initialize the angle-axis rotation from an \a angle in radian
* and an \a axis which \b must \b be \b normalized.
*
* \warning If the \a axis vector is not normalized, then the angle-axis object
* represents an invalid rotation. */
template<typename Derived>
+ EIGEN_DEVICE_FUNC
inline AngleAxis(const Scalar& angle, const MatrixBase<Derived>& axis) : m_axis(axis), m_angle(angle) {}
- /** Constructs and initialize the angle-axis rotation from a quaternion \a q. */
- template<typename QuatDerived> inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
+ /** Constructs and initialize the angle-axis rotation from a quaternion \a q.
+ * This function implicitly normalizes the quaternion \a q.
+ */
+ template<typename QuatDerived>
+ EIGEN_DEVICE_FUNC inline explicit AngleAxis(const QuaternionBase<QuatDerived>& q) { *this = q; }
/** Constructs and initialize the angle-axis rotation from a 3x3 rotation matrix. */
template<typename Derived>
- inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
+ EIGEN_DEVICE_FUNC inline explicit AngleAxis(const MatrixBase<Derived>& m) { *this = m; }
/** \returns the value of the rotation angle in radian */
- Scalar angle() const { return m_angle; }
+ EIGEN_DEVICE_FUNC Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the stored angle in radian */
- Scalar& angle() { return m_angle; }
+ EIGEN_DEVICE_FUNC Scalar& angle() { return m_angle; }
/** \returns the rotation axis */
- const Vector3& axis() const { return m_axis; }
+ EIGEN_DEVICE_FUNC const Vector3& axis() const { return m_axis; }
/** \returns a read-write reference to the stored rotation axis.
*
* \warning The rotation axis must remain a \b unit vector.
*/
- Vector3& axis() { return m_axis; }
+ EIGEN_DEVICE_FUNC Vector3& axis() { return m_axis; }
/** Concatenates two rotations */
- inline QuaternionType operator* (const AngleAxis& other) const
+ EIGEN_DEVICE_FUNC inline QuaternionType operator* (const AngleAxis& other) const
{ return QuaternionType(*this) * QuaternionType(other); }
/** Concatenates two rotations */
- inline QuaternionType operator* (const QuaternionType& other) const
+ EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& other) const
{ return QuaternionType(*this) * other; }
/** Concatenates two rotations */
- friend inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
+ friend EIGEN_DEVICE_FUNC inline QuaternionType operator* (const QuaternionType& a, const AngleAxis& b)
{ return a * QuaternionType(b); }
/** \returns the inverse rotation, i.e., an angle-axis with opposite rotation angle */
- AngleAxis inverse() const
+ EIGEN_DEVICE_FUNC AngleAxis inverse() const
{ return AngleAxis(-m_angle, m_axis); }
template<class QuatDerived>
- AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
+ EIGEN_DEVICE_FUNC AngleAxis& operator=(const QuaternionBase<QuatDerived>& q);
template<typename Derived>
- AngleAxis& operator=(const MatrixBase<Derived>& m);
+ EIGEN_DEVICE_FUNC AngleAxis& operator=(const MatrixBase<Derived>& m);
template<typename Derived>
- AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix3 toRotationMatrix(void) const;
+ EIGEN_DEVICE_FUNC AngleAxis& fromRotationMatrix(const MatrixBase<Derived>& m);
+ EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix(void) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -127,24 +131,24 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<AngleAxis,AngleAxis<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
+ EIGEN_DEVICE_FUNC inline explicit AngleAxis(const AngleAxis<OtherScalarType>& other)
{
m_axis = other.axis().template cast<Scalar>();
m_angle = Scalar(other.angle());
}
- static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
+ EIGEN_DEVICE_FUNC static inline const AngleAxis Identity() { return AngleAxis(Scalar(0), Vector3::UnitX()); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const AngleAxis& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_axis.isApprox(other.m_axis, prec) && internal::isApprox(m_angle,other.m_angle, prec); }
};
@@ -156,29 +160,32 @@ typedef AngleAxis<float> AngleAxisf;
typedef AngleAxis<double> AngleAxisd;
/** Set \c *this from a \b unit quaternion.
- * The axis is normalized.
+ *
+ * The resulting axis is normalized, and the computed angle is in the [0,pi] range.
*
- * \warning As any other method dealing with quaternion, if the input quaternion
- * is not normalized then the result is undefined.
+ * This function implicitly normalizes the quaternion \a q.
*/
template<typename Scalar>
template<typename QuatDerived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
+EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
- using std::acos;
- using std::min;
- using std::max;
- using std::sqrt;
- Scalar n2 = q.vec().squaredNorm();
- if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
+ EIGEN_USING_STD_MATH(atan2)
+ EIGEN_USING_STD_MATH(abs)
+ Scalar n = q.vec().norm();
+ if(n<NumTraits<Scalar>::epsilon())
+ n = q.vec().stableNorm();
+
+ if (n != Scalar(0))
{
- m_angle = Scalar(0);
- m_axis << Scalar(1), Scalar(0), Scalar(0);
+ m_angle = Scalar(2)*atan2(n, abs(q.w()));
+ if(q.w() < 0)
+ n = -n;
+ m_axis = q.vec() / n;
}
else
{
- m_angle = Scalar(2)*acos((min)((max)(Scalar(-1),q.w()),Scalar(1)));
- m_axis = q.vec() / sqrt(n2);
+ m_angle = Scalar(0);
+ m_axis << Scalar(1), Scalar(0), Scalar(0);
}
return *this;
}
@@ -187,7 +194,7 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived
*/
template<typename Scalar>
template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
+EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
{
// Since a direct conversion would not be really faster,
// let's use the robust Quaternion implementation:
@@ -199,7 +206,7 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const MatrixBase<Derived>& mat)
**/
template<typename Scalar>
template<typename Derived>
-AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
+EIGEN_DEVICE_FUNC AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
return *this = QuaternionType(mat);
}
@@ -208,10 +215,10 @@ AngleAxis<Scalar>& AngleAxis<Scalar>::fromRotationMatrix(const MatrixBase<Derive
*/
template<typename Scalar>
typename AngleAxis<Scalar>::Matrix3
-AngleAxis<Scalar>::toRotationMatrix(void) const
+EIGEN_DEVICE_FUNC AngleAxis<Scalar>::toRotationMatrix(void) const
{
- using std::sin;
- using std::cos;
+ EIGEN_USING_STD_MATH(sin)
+ EIGEN_USING_STD_MATH(cos)
Matrix3 res;
Vector3 sin_axis = sin(m_angle) * m_axis;
Scalar c = cos(m_angle);
diff --git a/eigen/Eigen/src/Geometry/CMakeLists.txt b/eigen/Eigen/src/Geometry/CMakeLists.txt
deleted file mode 100644
index f8f728b..0000000
--- a/eigen/Eigen/src/Geometry/CMakeLists.txt
+++ /dev/null
@@ -1,8 +0,0 @@
-FILE(GLOB Eigen_Geometry_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Geometry_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry COMPONENT Devel
- )
-
-ADD_SUBDIRECTORY(arch)
diff --git a/eigen/Eigen/src/Geometry/EulerAngles.h b/eigen/Eigen/src/Geometry/EulerAngles.h
index 82802fb..c633268 100644
--- a/eigen/Eigen/src/Geometry/EulerAngles.h
+++ b/eigen/Eigen/src/Geometry/EulerAngles.h
@@ -33,12 +33,12 @@ namespace Eigen {
* \sa class AngleAxis
*/
template<typename Derived>
-inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
+EIGEN_DEVICE_FUNC inline Matrix<typename MatrixBase<Derived>::Scalar,3,1>
MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
{
- using std::atan2;
- using std::sin;
- using std::cos;
+ EIGEN_USING_STD_MATH(atan2)
+ EIGEN_USING_STD_MATH(sin)
+ EIGEN_USING_STD_MATH(cos)
/* Implemented from Graphics Gems IV */
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived,3,3)
@@ -55,7 +55,12 @@ MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
res[0] = atan2(coeff(j,i), coeff(k,i));
if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0)))
{
- res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
Scalar s2 = Vector2(coeff(j,i), coeff(k,i)).norm();
res[1] = -atan2(s2, coeff(i,i));
}
@@ -84,7 +89,12 @@ MatrixBase<Derived>::eulerAngles(Index a0, Index a1, Index a2) const
res[0] = atan2(coeff(j,k), coeff(k,k));
Scalar c2 = Vector2(coeff(i,i), coeff(i,j)).norm();
if((odd && res[0]<Scalar(0)) || ((!odd) && res[0]>Scalar(0))) {
- res[0] = (res[0] > Scalar(0)) ? res[0] - Scalar(M_PI) : res[0] + Scalar(M_PI);
+ if(res[0] > Scalar(0)) {
+ res[0] -= Scalar(EIGEN_PI);
+ }
+ else {
+ res[0] += Scalar(EIGEN_PI);
+ }
res[1] = atan2(-coeff(i,k), -c2);
}
else
diff --git a/eigen/Eigen/src/Geometry/Homogeneous.h b/eigen/Eigen/src/Geometry/Homogeneous.h
index 820ac96..5f0da1a 100644
--- a/eigen/Eigen/src/Geometry/Homogeneous.h
+++ b/eigen/Eigen/src/Geometry/Homogeneous.h
@@ -34,7 +34,7 @@ struct traits<Homogeneous<MatrixType,Direction> >
: traits<MatrixType>
{
typedef typename traits<MatrixType>::StorageKind StorageKind;
- typedef typename nested<MatrixType>::type MatrixTypeNested;
+ typedef typename ref_selector<MatrixType>::type MatrixTypeNested;
typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested;
enum {
RowsPlusOne = (MatrixType::RowsAtCompileTime != Dynamic) ?
@@ -48,8 +48,7 @@ struct traits<Homogeneous<MatrixType,Direction> >
TmpFlags = _MatrixTypeNested::Flags & HereditaryBits,
Flags = ColsAtCompileTime==1 ? (TmpFlags & ~RowMajorBit)
: RowsAtCompileTime==1 ? (TmpFlags | RowMajorBit)
- : TmpFlags,
- CoeffReadCost = _MatrixTypeNested::CoeffReadCost
+ : TmpFlags
};
};
@@ -59,102 +58,117 @@ template<typename MatrixType,typename Rhs> struct homogeneous_right_product_impl
} // end namespace internal
template<typename MatrixType,int _Direction> class Homogeneous
- : internal::no_assignment_operator, public MatrixBase<Homogeneous<MatrixType,_Direction> >
+ : public MatrixBase<Homogeneous<MatrixType,_Direction> >, internal::no_assignment_operator
{
public:
+ typedef MatrixType NestedExpression;
enum { Direction = _Direction };
typedef MatrixBase<Homogeneous> Base;
EIGEN_DENSE_PUBLIC_INTERFACE(Homogeneous)
- inline Homogeneous(const MatrixType& matrix)
+ EIGEN_DEVICE_FUNC explicit inline Homogeneous(const MatrixType& matrix)
: m_matrix(matrix)
{}
- inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
- inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
-
- inline Scalar coeff(Index row, Index col=0) const
- {
- if( (int(Direction)==Vertical && row==m_matrix.rows())
- || (int(Direction)==Horizontal && col==m_matrix.cols()))
- return Scalar(1);
- return m_matrix.coeff(row, col);
- }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_matrix.rows() + (int(Direction)==Vertical ? 1 : 0); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_matrix.cols() + (int(Direction)==Horizontal ? 1 : 0); }
+
+ EIGEN_DEVICE_FUNC const NestedExpression& nestedExpression() const { return m_matrix; }
template<typename Rhs>
- inline const internal::homogeneous_right_product_impl<Homogeneous,Rhs>
+ EIGEN_DEVICE_FUNC inline const Product<Homogeneous,Rhs>
operator* (const MatrixBase<Rhs>& rhs) const
{
eigen_assert(int(Direction)==Horizontal);
- return internal::homogeneous_right_product_impl<Homogeneous,Rhs>(m_matrix,rhs.derived());
+ return Product<Homogeneous,Rhs>(*this,rhs.derived());
}
template<typename Lhs> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Lhs>
+ EIGEN_DEVICE_FUNC inline const Product<Lhs,Homogeneous>
operator* (const MatrixBase<Lhs>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Lhs>(lhs.derived(),rhs.m_matrix);
+ return Product<Lhs,Homogeneous>(lhs.derived(),rhs);
}
template<typename Scalar, int Dim, int Mode, int Options> friend
- inline const internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >
+ EIGEN_DEVICE_FUNC inline const Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous >
operator* (const Transform<Scalar,Dim,Mode,Options>& lhs, const Homogeneous& rhs)
{
eigen_assert(int(Direction)==Vertical);
- return internal::homogeneous_left_product_impl<Homogeneous,Transform<Scalar,Dim,Mode,Options> >(lhs,rhs.m_matrix);
+ return Product<Transform<Scalar,Dim,Mode,Options>, Homogeneous>(lhs,rhs);
+ }
+
+ template<typename Func>
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::result_of<Func(Scalar,Scalar)>::type
+ redux(const Func& func) const
+ {
+ return func(m_matrix.redux(func), Scalar(1));
}
protected:
typename MatrixType::Nested m_matrix;
};
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \returns a vector expression that is one longer than the vector argument, with the value 1 symbolically appended as the last coefficient.
*
- * \return an expression of the equivalent homogeneous vector
+ * This can be used to convert affine coordinates to homogeneous coordinates.
*
* \only_for_vectors
*
* Example: \include MatrixBase_homogeneous.cpp
* Output: \verbinclude MatrixBase_homogeneous.out
*
- * \sa class Homogeneous
+ * \sa VectorwiseOp::homogeneous(), class Homogeneous
*/
template<typename Derived>
-inline typename MatrixBase<Derived>::HomogeneousReturnType
+EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::HomogeneousReturnType
MatrixBase<Derived>::homogeneous() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
- return derived();
+ return HomogeneousReturnType(derived());
}
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
*
- * \returns a matrix expression of homogeneous column (or row) vectors
+ * \returns an expression where the value 1 is symbolically appended as the final coefficient to each column (or row) of the matrix.
+ *
+ * This can be used to convert affine coordinates to homogeneous coordinates.
*
* Example: \include VectorwiseOp_homogeneous.cpp
* Output: \verbinclude VectorwiseOp_homogeneous.out
*
- * \sa MatrixBase::homogeneous() */
+ * \sa MatrixBase::homogeneous(), class Homogeneous */
template<typename ExpressionType, int Direction>
-inline Homogeneous<ExpressionType,Direction>
+EIGEN_DEVICE_FUNC inline Homogeneous<ExpressionType,Direction>
VectorwiseOp<ExpressionType,Direction>::homogeneous() const
{
- return _expression();
+ return HomogeneousReturnType(_expression());
}
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
*
- * \returns an expression of the homogeneous normalized vector of \c *this
+ * \brief homogeneous normalization
+ *
+ * \returns a vector expression of the N-1 first coefficients of \c *this divided by that last coefficient.
+ *
+ * This can be used to convert homogeneous coordinates to affine coordinates.
+ *
+ * It is essentially a shortcut for:
+ * \code
+ this->head(this->size()-1)/this->coeff(this->size()-1);
+ \endcode
*
* Example: \include MatrixBase_hnormalized.cpp
* Output: \verbinclude MatrixBase_hnormalized.out
*
* \sa VectorwiseOp::hnormalized() */
template<typename Derived>
-inline const typename MatrixBase<Derived>::HNormalizedReturnType
+EIGEN_DEVICE_FUNC inline const typename MatrixBase<Derived>::HNormalizedReturnType
MatrixBase<Derived>::hnormalized() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived);
@@ -163,16 +177,22 @@ MatrixBase<Derived>::hnormalized() const
ColsAtCompileTime==1?1:size()-1) / coeff(size()-1);
}
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \brief column or row-wise homogeneous normalization
*
- * \returns an expression of the homogeneous normalized vector of \c *this
+ * \returns an expression of the first N-1 coefficients of each column (or row) of \c *this divided by the last coefficient of each column (or row).
+ *
+ * This can be used to convert homogeneous coordinates to affine coordinates.
+ *
+ * It is conceptually equivalent to calling MatrixBase::hnormalized() to each column (or row) of \c *this.
*
* Example: \include DirectionWise_hnormalized.cpp
* Output: \verbinclude DirectionWise_hnormalized.out
*
* \sa MatrixBase::hnormalized() */
template<typename ExpressionType, int Direction>
-inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
+EIGEN_DEVICE_FUNC inline const typename VectorwiseOp<ExpressionType,Direction>::HNormalizedReturnType
VectorwiseOp<ExpressionType,Direction>::hnormalized() const
{
return HNormalized_Block(_expression(),0,0,
@@ -196,7 +216,7 @@ template<typename MatrixOrTransformType>
struct take_matrix_for_product
{
typedef MatrixOrTransformType type;
- static const type& run(const type &x) { return x; }
+ EIGEN_DEVICE_FUNC static const type& run(const type &x) { return x; }
};
template<typename Scalar, int Dim, int Mode,int Options>
@@ -204,7 +224,7 @@ struct take_matrix_for_product<Transform<Scalar, Dim, Mode, Options> >
{
typedef Transform<Scalar, Dim, Mode, Options> TransformType;
typedef typename internal::add_const<typename TransformType::ConstAffinePart>::type type;
- static type run (const TransformType& x) { return x.affine(); }
+ EIGEN_DEVICE_FUNC static type run (const TransformType& x) { return x.affine(); }
};
template<typename Scalar, int Dim, int Options>
@@ -212,7 +232,7 @@ struct take_matrix_for_product<Transform<Scalar, Dim, Projective, Options> >
{
typedef Transform<Scalar, Dim, Projective, Options> TransformType;
typedef typename TransformType::MatrixType type;
- static const type& run (const TransformType& x) { return x.matrix(); }
+ EIGEN_DEVICE_FUNC static const type& run (const TransformType& x) { return x.matrix(); }
};
template<typename MatrixType,typename Lhs>
@@ -237,16 +257,15 @@ struct homogeneous_left_product_impl<Homogeneous<MatrixType,Vertical>,Lhs>
typedef typename traits<homogeneous_left_product_impl>::LhsMatrixType LhsMatrixType;
typedef typename remove_all<LhsMatrixType>::type LhsMatrixTypeCleaned;
typedef typename remove_all<typename LhsMatrixTypeCleaned::Nested>::type LhsMatrixTypeNested;
- typedef typename MatrixType::Index Index;
- homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
+ EIGEN_DEVICE_FUNC homogeneous_left_product_impl(const Lhs& lhs, const MatrixType& rhs)
: m_lhs(take_matrix_for_product<Lhs>::run(lhs)),
m_rhs(rhs)
{}
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
- template<typename Dest> void evalTo(Dest& dst) const
+ template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = Block<const LhsMatrixTypeNested,
@@ -277,15 +296,14 @@ struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
: public ReturnByValue<homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs> >
{
typedef typename remove_all<typename Rhs::Nested>::type RhsNested;
- typedef typename MatrixType::Index Index;
- homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
+ EIGEN_DEVICE_FUNC homogeneous_right_product_impl(const MatrixType& lhs, const Rhs& rhs)
: m_lhs(lhs), m_rhs(rhs)
{}
- inline Index rows() const { return m_lhs.rows(); }
- inline Index cols() const { return m_rhs.cols(); }
+ EIGEN_DEVICE_FUNC inline Index rows() const { return m_lhs.rows(); }
+ EIGEN_DEVICE_FUNC inline Index cols() const { return m_rhs.cols(); }
- template<typename Dest> void evalTo(Dest& dst) const
+ template<typename Dest> EIGEN_DEVICE_FUNC void evalTo(Dest& dst) const
{
// FIXME investigate how to allow lazy evaluation of this product when possible
dst = m_lhs * Block<const RhsNested,
@@ -300,6 +318,178 @@ struct homogeneous_right_product_impl<Homogeneous<MatrixType,Horizontal>,Rhs>
typename Rhs::Nested m_rhs;
};
+template<typename ArgType,int Direction>
+struct evaluator_traits<Homogeneous<ArgType,Direction> >
+{
+ typedef typename storage_kind_to_evaluator_kind<typename ArgType::StorageKind>::Kind Kind;
+ typedef HomogeneousShape Shape;
+};
+
+template<> struct AssignmentKind<DenseShape,HomogeneousShape> { typedef Dense2Dense Kind; };
+
+
+template<typename ArgType,int Direction>
+struct unary_evaluator<Homogeneous<ArgType,Direction>, IndexBased>
+ : evaluator<typename Homogeneous<ArgType,Direction>::PlainObject >
+{
+ typedef Homogeneous<ArgType,Direction> XprType;
+ typedef typename XprType::PlainObject PlainObject;
+ typedef evaluator<PlainObject> Base;
+
+ EIGEN_DEVICE_FUNC explicit unary_evaluator(const XprType& op)
+ : Base(), m_temp(op)
+ {
+ ::new (static_cast<Base*>(this)) Base(m_temp);
+ }
+
+protected:
+ PlainObject m_temp;
+};
+
+// dense = homogeneous
+template< typename DstXprType, typename ArgType, typename Scalar>
+struct Assignment<DstXprType, Homogeneous<ArgType,Vertical>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
+{
+ typedef Homogeneous<ArgType,Vertical> SrcXprType;
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ dst.template topRows<ArgType::RowsAtCompileTime>(src.nestedExpression().rows()) = src.nestedExpression();
+ dst.row(dst.rows()-1).setOnes();
+ }
+};
+
+// dense = homogeneous
+template< typename DstXprType, typename ArgType, typename Scalar>
+struct Assignment<DstXprType, Homogeneous<ArgType,Horizontal>, internal::assign_op<Scalar,typename ArgType::Scalar>, Dense2Dense>
+{
+ typedef Homogeneous<ArgType,Horizontal> SrcXprType;
+ EIGEN_DEVICE_FUNC static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<Scalar,typename ArgType::Scalar> &)
+ {
+ Index dstRows = src.rows();
+ Index dstCols = src.cols();
+ if((dst.rows()!=dstRows) || (dst.cols()!=dstCols))
+ dst.resize(dstRows, dstCols);
+
+ dst.template leftCols<ArgType::ColsAtCompileTime>(src.nestedExpression().cols()) = src.nestedExpression();
+ dst.col(dst.cols()-1).setOnes();
+ }
+};
+
+template<typename LhsArg, typename Rhs, int ProductTag>
+struct generic_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs, HomogeneousShape, DenseShape, ProductTag>
+{
+ template<typename Dest>
+ EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Homogeneous<LhsArg,Horizontal>& lhs, const Rhs& rhs)
+ {
+ homogeneous_right_product_impl<Homogeneous<LhsArg,Horizontal>, Rhs>(lhs.nestedExpression(), rhs).evalTo(dst);
+ }
+};
+
+template<typename Lhs,typename Rhs>
+struct homogeneous_right_product_refactoring_helper
+{
+ enum {
+ Dim = Lhs::ColsAtCompileTime,
+ Rows = Lhs::RowsAtCompileTime
+ };
+ typedef typename Rhs::template ConstNRowsBlockXpr<Dim>::Type LinearBlockConst;
+ typedef typename remove_const<LinearBlockConst>::type LinearBlock;
+ typedef typename Rhs::ConstRowXpr ConstantColumn;
+ typedef Replicate<const ConstantColumn,Rows,1> ConstantBlock;
+ typedef Product<Lhs,LinearBlock,LazyProduct> LinearProduct;
+ typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, HomogeneousShape, DenseShape>
+ : public evaluator<typename homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs>::Xpr>
+{
+ typedef Product<Lhs, Rhs, LazyProduct> XprType;
+ typedef homogeneous_right_product_refactoring_helper<typename Lhs::NestedExpression,Rhs> helper;
+ typedef typename helper::ConstantBlock ConstantBlock;
+ typedef typename helper::Xpr RefactoredXpr;
+ typedef evaluator<RefactoredXpr> Base;
+
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : Base( xpr.lhs().nestedExpression() .lazyProduct( xpr.rhs().template topRows<helper::Dim>(xpr.lhs().nestedExpression().cols()) )
+ + ConstantBlock(xpr.rhs().row(xpr.rhs().rows()-1),xpr.lhs().rows(), 1) )
+ {}
+};
+
+template<typename Lhs, typename RhsArg, int ProductTag>
+struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
+{
+ template<typename Dest>
+ EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
+ {
+ homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, Lhs>(lhs, rhs.nestedExpression()).evalTo(dst);
+ }
+};
+
+// TODO: the following specialization is to address a regression from 3.2 to 3.3
+// In the future, this path should be optimized.
+template<typename Lhs, typename RhsArg, int ProductTag>
+struct generic_product_impl<Lhs, Homogeneous<RhsArg,Vertical>, TriangularShape, HomogeneousShape, ProductTag>
+{
+ template<typename Dest>
+ static void evalTo(Dest& dst, const Lhs& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
+ {
+ dst.noalias() = lhs * rhs.eval();
+ }
+};
+
+template<typename Lhs,typename Rhs>
+struct homogeneous_left_product_refactoring_helper
+{
+ enum {
+ Dim = Rhs::RowsAtCompileTime,
+ Cols = Rhs::ColsAtCompileTime
+ };
+ typedef typename Lhs::template ConstNColsBlockXpr<Dim>::Type LinearBlockConst;
+ typedef typename remove_const<LinearBlockConst>::type LinearBlock;
+ typedef typename Lhs::ConstColXpr ConstantColumn;
+ typedef Replicate<const ConstantColumn,1,Cols> ConstantBlock;
+ typedef Product<LinearBlock,Rhs,LazyProduct> LinearProduct;
+ typedef CwiseBinaryOp<internal::scalar_sum_op<typename Lhs::Scalar,typename Rhs::Scalar>, const LinearProduct, const ConstantBlock> Xpr;
+};
+
+template<typename Lhs, typename Rhs, int ProductTag>
+struct product_evaluator<Product<Lhs, Rhs, LazyProduct>, ProductTag, DenseShape, HomogeneousShape>
+ : public evaluator<typename homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression>::Xpr>
+{
+ typedef Product<Lhs, Rhs, LazyProduct> XprType;
+ typedef homogeneous_left_product_refactoring_helper<Lhs,typename Rhs::NestedExpression> helper;
+ typedef typename helper::ConstantBlock ConstantBlock;
+ typedef typename helper::Xpr RefactoredXpr;
+ typedef evaluator<RefactoredXpr> Base;
+
+ EIGEN_DEVICE_FUNC explicit product_evaluator(const XprType& xpr)
+ : Base( xpr.lhs().template leftCols<helper::Dim>(xpr.rhs().nestedExpression().rows()) .lazyProduct( xpr.rhs().nestedExpression() )
+ + ConstantBlock(xpr.lhs().col(xpr.lhs().cols()-1),1,xpr.rhs().cols()) )
+ {}
+};
+
+template<typename Scalar, int Dim, int Mode,int Options, typename RhsArg, int ProductTag>
+struct generic_product_impl<Transform<Scalar,Dim,Mode,Options>, Homogeneous<RhsArg,Vertical>, DenseShape, HomogeneousShape, ProductTag>
+{
+ typedef Transform<Scalar,Dim,Mode,Options> TransformType;
+ template<typename Dest>
+ EIGEN_DEVICE_FUNC static void evalTo(Dest& dst, const TransformType& lhs, const Homogeneous<RhsArg,Vertical>& rhs)
+ {
+ homogeneous_left_product_impl<Homogeneous<RhsArg,Vertical>, TransformType>(lhs, rhs.nestedExpression()).evalTo(dst);
+ }
+};
+
+template<typename ExpressionType, int Side, bool Transposed>
+struct permutation_matrix_product<ExpressionType, Side, Transposed, HomogeneousShape>
+ : public permutation_matrix_product<ExpressionType, Side, Transposed, DenseShape>
+{};
+
} // end namespace internal
} // end namespace Eigen
diff --git a/eigen/Eigen/src/Geometry/Hyperplane.h b/eigen/Eigen/src/Geometry/Hyperplane.h
index 00b7c43..05929b2 100644
--- a/eigen/Eigen/src/Geometry/Hyperplane.h
+++ b/eigen/Eigen/src/Geometry/Hyperplane.h
@@ -22,8 +22,8 @@ namespace Eigen {
* A hyperplane is an affine subspace of dimension n-1 in a space of dimension n.
* For example, a hyperplane in a plane is a line; a hyperplane in 3-space is a plane.
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
* Notice that the dimension of the hyperplane is _AmbientDim-1.
*
* This class represents an hyperplane as the zero set of the implicit equation
@@ -41,7 +41,7 @@ public:
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DenseIndex Index;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType;
typedef Matrix<Scalar,Index(AmbientDimAtCompileTime)==Dynamic
? Dynamic
@@ -50,21 +50,21 @@ public:
typedef const Block<const Coefficients,AmbientDimAtCompileTime,1> ConstNormalReturnType;
/** Default constructor without initialization */
- inline Hyperplane() {}
+ EIGEN_DEVICE_FUNC inline Hyperplane() {}
template<int OtherOptions>
- Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC Hyperplane(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_coeffs(other.coeffs())
{}
/** Constructs a dynamic-size hyperplane with \a _dim the dimension
* of the ambient space */
- inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
+ EIGEN_DEVICE_FUNC inline explicit Hyperplane(Index _dim) : m_coeffs(_dim+1) {}
/** Construct a plane from its normal \a n and a point \a e onto the plane.
* \warning the vector normal is assumed to be normalized.
*/
- inline Hyperplane(const VectorType& n, const VectorType& e)
+ EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const VectorType& e)
: m_coeffs(n.size()+1)
{
normal() = n;
@@ -75,7 +75,7 @@ public:
* such that the algebraic equation of the plane is \f$ n \cdot x + d = 0 \f$.
* \warning the vector normal is assumed to be normalized.
*/
- inline Hyperplane(const VectorType& n, const Scalar& d)
+ EIGEN_DEVICE_FUNC inline Hyperplane(const VectorType& n, const Scalar& d)
: m_coeffs(n.size()+1)
{
normal() = n;
@@ -85,7 +85,7 @@ public:
/** Constructs a hyperplane passing through the two points. If the dimension of the ambient space
* is greater than 2, then there isn't uniqueness, so an arbitrary choice is made.
*/
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
+ EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1)
{
Hyperplane result(p0.size());
result.normal() = (p1 - p0).unitOrthogonal();
@@ -96,7 +96,7 @@ public:
/** Constructs a hyperplane passing through the three points. The dimension of the ambient space
* is required to be exactly 3.
*/
- static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
+ EIGEN_DEVICE_FUNC static inline Hyperplane Through(const VectorType& p0, const VectorType& p1, const VectorType& p2)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 3)
Hyperplane result(p0.size());
@@ -120,19 +120,19 @@ public:
* so an arbitrary choice is made.
*/
// FIXME to be consitent with the rest this could be implemented as a static Through function ??
- explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
+ EIGEN_DEVICE_FUNC explicit Hyperplane(const ParametrizedLine<Scalar, AmbientDimAtCompileTime>& parametrized)
{
normal() = parametrized.direction().unitOrthogonal();
offset() = -parametrized.origin().dot(normal());
}
- ~Hyperplane() {}
+ EIGEN_DEVICE_FUNC ~Hyperplane() {}
/** \returns the dimension in which the plane holds */
- inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
+ EIGEN_DEVICE_FUNC inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_coeffs.size()-1 : Index(AmbientDimAtCompileTime); }
/** normalizes \c *this */
- void normalize(void)
+ EIGEN_DEVICE_FUNC void normalize(void)
{
m_coeffs /= normal().norm();
}
@@ -140,45 +140,45 @@ public:
/** \returns the signed distance between the plane \c *this and a point \a p.
* \sa absDistance()
*/
- inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
+ EIGEN_DEVICE_FUNC inline Scalar signedDistance(const VectorType& p) const { return normal().dot(p) + offset(); }
/** \returns the absolute distance between the plane \c *this and a point \a p.
* \sa signedDistance()
*/
- inline Scalar absDistance(const VectorType& p) const { using std::abs; return abs(signedDistance(p)); }
+ EIGEN_DEVICE_FUNC inline Scalar absDistance(const VectorType& p) const { return numext::abs(signedDistance(p)); }
/** \returns the projection of a point \a p onto the plane \c *this.
*/
- inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
+ EIGEN_DEVICE_FUNC inline VectorType projection(const VectorType& p) const { return p - signedDistance(p) * normal(); }
/** \returns a constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
- inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
+ EIGEN_DEVICE_FUNC inline ConstNormalReturnType normal() const { return ConstNormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns a non-constant reference to the unit normal vector of the plane, which corresponds
* to the linear part of the implicit equation.
*/
- inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
+ EIGEN_DEVICE_FUNC inline NormalReturnType normal() { return NormalReturnType(m_coeffs,0,0,dim(),1); }
/** \returns the distance to the origin, which is also the "constant term" of the implicit equation
* \warning the vector normal is assumed to be normalized.
*/
- inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
+ EIGEN_DEVICE_FUNC inline const Scalar& offset() const { return m_coeffs.coeff(dim()); }
/** \returns a non-constant reference to the distance to the origin, which is also the constant part
* of the implicit equation */
- inline Scalar& offset() { return m_coeffs(dim()); }
+ EIGEN_DEVICE_FUNC inline Scalar& offset() { return m_coeffs(dim()); }
/** \returns a constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
- inline const Coefficients& coeffs() const { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
/** \returns a non-constant reference to the coefficients c_i of the plane equation:
* \f$ c_0*x_0 + ... + c_{d-1}*x_{d-1} + c_d = 0 \f$
*/
- inline Coefficients& coeffs() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
/** \returns the intersection of *this with \a other.
*
@@ -186,16 +186,15 @@ public:
*
* \note If \a other is approximately parallel to *this, this method will return any point on *this.
*/
- VectorType intersection(const Hyperplane& other) const
+ EIGEN_DEVICE_FUNC VectorType intersection(const Hyperplane& other) const
{
- using std::abs;
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
Scalar det = coeffs().coeff(0) * other.coeffs().coeff(1) - coeffs().coeff(1) * other.coeffs().coeff(0);
// since the line equations ax+by=c are normalized with a^2+b^2=1, the following tests
// whether the two lines are approximately parallel.
if(internal::isMuchSmallerThan(det, Scalar(1)))
{ // special case where the two lines are approximately parallel. Pick any point on the first line.
- if(abs(coeffs().coeff(1))>abs(coeffs().coeff(0)))
+ if(numext::abs(coeffs().coeff(1))>numext::abs(coeffs().coeff(0)))
return VectorType(coeffs().coeff(1), -coeffs().coeff(2)/coeffs().coeff(1)-coeffs().coeff(0));
else
return VectorType(-coeffs().coeff(2)/coeffs().coeff(0)-coeffs().coeff(1), coeffs().coeff(0));
@@ -215,10 +214,13 @@ public:
* or a more generic #Affine transformation. The default is #Affine.
*/
template<typename XprType>
- inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
+ EIGEN_DEVICE_FUNC inline Hyperplane& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
{
if (traits==Affine)
+ {
normal() = mat.inverse().transpose() * normal();
+ m_coeffs /= normal().norm();
+ }
else if (traits==Isometry)
normal() = mat * normal();
else
@@ -236,7 +238,7 @@ public:
* Other kind of transformations are not supported.
*/
template<int TrOptions>
- inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
+ EIGEN_DEVICE_FUNC inline Hyperplane& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
TransformTraits traits = Affine)
{
transform(t.linear(), traits);
@@ -250,7 +252,7 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Hyperplane,
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Hyperplane,
Hyperplane<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<Hyperplane,
@@ -259,7 +261,7 @@ public:
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
- inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC inline explicit Hyperplane(const Hyperplane<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
@@ -267,7 +269,7 @@ public:
*
* \sa MatrixBase::isApprox() */
template<int OtherOptions>
- bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Hyperplane<Scalar,AmbientDimAtCompileTime,OtherOptions>& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:
diff --git a/eigen/Eigen/src/Geometry/OrthoMethods.h b/eigen/Eigen/src/Geometry/OrthoMethods.h
index 556bc81..a035e63 100644
--- a/eigen/Eigen/src/Geometry/OrthoMethods.h
+++ b/eigen/Eigen/src/Geometry/OrthoMethods.h
@@ -13,16 +13,24 @@
namespace Eigen {
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
*
* \returns the cross product of \c *this and \a other
*
* Here is a very good explanation of cross-product: http://xkcd.com/199/
+ *
+ * With complex numbers, the cross product is implemented as
+ * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$
+ *
* \sa MatrixBase::cross3()
*/
template<typename Derived>
template<typename OtherDerived>
-inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
+#ifndef EIGEN_PARSED_BY_DOXYGEN
+EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::template cross_product_return_type<OtherDerived>::type
+#else
+inline typename MatrixBase<Derived>::PlainObject
+#endif
MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3)
@@ -30,8 +38,8 @@ MatrixBase<Derived>::cross(const MatrixBase<OtherDerived>& other) const
// Note that there is no need for an expression here since the compiler
// optimize such a small temporary very well (even within a complex expression)
- typename internal::nested<Derived,2>::type lhs(derived());
- typename internal::nested<OtherDerived,2>::type rhs(other.derived());
+ typename internal::nested_eval<Derived,2>::type lhs(derived());
+ typename internal::nested_eval<OtherDerived,2>::type rhs(other.derived());
return typename cross_product_return_type<OtherDerived>::type(
numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)),
numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)),
@@ -45,7 +53,7 @@ template< int Arch,typename VectorLhs,typename VectorRhs,
typename Scalar = typename VectorLhs::Scalar,
bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)>
struct cross3_impl {
- static inline typename internal::plain_matrix_type<VectorLhs>::type
+ EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type<VectorLhs>::type
run(const VectorLhs& lhs, const VectorRhs& rhs)
{
return typename internal::plain_matrix_type<VectorLhs>::type(
@@ -59,7 +67,7 @@ struct cross3_impl {
}
-/** \geometry_module
+/** \geometry_module \ingroup Geometry_Module
*
* \returns the cross product of \c *this and \a other using only the x, y, and z coefficients
*
@@ -70,14 +78,14 @@ struct cross3_impl {
*/
template<typename Derived>
template<typename OtherDerived>
-inline typename MatrixBase<Derived>::PlainObject
+EIGEN_DEVICE_FUNC inline typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4)
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4)
- typedef typename internal::nested<Derived,2>::type DerivedNested;
- typedef typename internal::nested<OtherDerived,2>::type OtherDerivedNested;
+ typedef typename internal::nested_eval<Derived,2>::type DerivedNested;
+ typedef typename internal::nested_eval<OtherDerived,2>::type OtherDerivedNested;
DerivedNested lhs(derived());
OtherDerivedNested rhs(other.derived());
@@ -86,38 +94,42 @@ MatrixBase<Derived>::cross3(const MatrixBase<OtherDerived>& other) const
typename internal::remove_all<OtherDerivedNested>::type>::run(lhs,rhs);
}
-/** \returns a matrix expression of the cross product of each column or row
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \returns a matrix expression of the cross product of each column or row
* of the referenced expression with the \a other vector.
*
* The referenced matrix must have one dimension equal to 3.
* The result matrix has the same dimensions than the referenced one.
*
- * \geometry_module
- *
* \sa MatrixBase::cross() */
template<typename ExpressionType, int Direction>
template<typename OtherDerived>
+EIGEN_DEVICE_FUNC
const typename VectorwiseOp<ExpressionType,Direction>::CrossReturnType
VectorwiseOp<ExpressionType,Direction>::cross(const MatrixBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ typename internal::nested_eval<ExpressionType,2>::type mat(_expression());
+ typename internal::nested_eval<OtherDerived,2>::type vec(other.derived());
CrossReturnType res(_expression().rows(),_expression().cols());
if(Direction==Vertical)
{
eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows");
- res.row(0) = (_expression().row(1) * other.coeff(2) - _expression().row(2) * other.coeff(1)).conjugate();
- res.row(1) = (_expression().row(2) * other.coeff(0) - _expression().row(0) * other.coeff(2)).conjugate();
- res.row(2) = (_expression().row(0) * other.coeff(1) - _expression().row(1) * other.coeff(0)).conjugate();
+ res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate();
+ res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate();
+ res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate();
}
else
{
eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns");
- res.col(0) = (_expression().col(1) * other.coeff(2) - _expression().col(2) * other.coeff(1)).conjugate();
- res.col(1) = (_expression().col(2) * other.coeff(0) - _expression().col(0) * other.coeff(2)).conjugate();
- res.col(2) = (_expression().col(0) * other.coeff(1) - _expression().col(1) * other.coeff(0)).conjugate();
+ res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate();
+ res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate();
+ res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate();
}
return res;
}
@@ -130,8 +142,8 @@ struct unitOrthogonal_selector
typedef typename plain_matrix_type<Derived>::type VectorType;
typedef typename traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Derived::Index Index;
typedef Matrix<Scalar,2,1> Vector2;
+ EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{
VectorType perp = VectorType::Zero(src.size());
@@ -154,6 +166,7 @@ struct unitOrthogonal_selector<Derived,3>
typedef typename plain_matrix_type<Derived>::type VectorType;
typedef typename traits<Derived>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
+ EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{
VectorType perp;
@@ -192,13 +205,16 @@ template<typename Derived>
struct unitOrthogonal_selector<Derived,2>
{
typedef typename plain_matrix_type<Derived>::type VectorType;
+ EIGEN_DEVICE_FUNC
static inline VectorType run(const Derived& src)
{ return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); }
};
} // end namespace internal
-/** \returns a unit vector which is orthogonal to \c *this
+/** \geometry_module \ingroup Geometry_Module
+ *
+ * \returns a unit vector which is orthogonal to \c *this
*
* The size of \c *this must be at least 2. If the size is exactly 2,
* then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized().
@@ -206,7 +222,7 @@ struct unitOrthogonal_selector<Derived,2>
* \sa cross()
*/
template<typename Derived>
-typename MatrixBase<Derived>::PlainObject
+EIGEN_DEVICE_FUNC typename MatrixBase<Derived>::PlainObject
MatrixBase<Derived>::unitOrthogonal() const
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived)
diff --git a/eigen/Eigen/src/Geometry/ParametrizedLine.h b/eigen/Eigen/src/Geometry/ParametrizedLine.h
index cf3252d..3929ca8 100644
--- a/eigen/Eigen/src/Geometry/ParametrizedLine.h
+++ b/eigen/Eigen/src/Geometry/ParametrizedLine.h
@@ -23,8 +23,8 @@ namespace Eigen {
* direction vector \f$ \mathbf{d} \f$ such that the line corresponds to
* the set \f$ l(t) = \mathbf{o} + t \mathbf{d} \f$, \f$ t \in \mathbf{R} \f$.
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients
- * \param _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic.
*/
template <typename _Scalar, int _AmbientDim, int _Options>
class ParametrizedLine
@@ -37,49 +37,49 @@ public:
};
typedef _Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef DenseIndex Index;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
typedef Matrix<Scalar,AmbientDimAtCompileTime,1,Options> VectorType;
/** Default constructor without initialization */
- inline ParametrizedLine() {}
+ EIGEN_DEVICE_FUNC inline ParametrizedLine() {}
template<int OtherOptions>
- ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC ParametrizedLine(const ParametrizedLine<Scalar,AmbientDimAtCompileTime,OtherOptions>& other)
: m_origin(other.origin()), m_direction(other.direction())
{}
/** Constructs a dynamic-size line with \a _dim the dimension
* of the ambient space */
- inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {}
+ EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(Index _dim) : m_origin(_dim), m_direction(_dim) {}
/** Initializes a parametrized line of direction \a direction and origin \a origin.
* \warning the vector direction is assumed to be normalized.
*/
- ParametrizedLine(const VectorType& origin, const VectorType& direction)
+ EIGEN_DEVICE_FUNC ParametrizedLine(const VectorType& origin, const VectorType& direction)
: m_origin(origin), m_direction(direction) {}
template <int OtherOptions>
- explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane);
+ EIGEN_DEVICE_FUNC explicit ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane);
/** Constructs a parametrized line going from \a p0 to \a p1. */
- static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
+ EIGEN_DEVICE_FUNC static inline ParametrizedLine Through(const VectorType& p0, const VectorType& p1)
{ return ParametrizedLine(p0, (p1-p0).normalized()); }
- ~ParametrizedLine() {}
+ EIGEN_DEVICE_FUNC ~ParametrizedLine() {}
/** \returns the dimension in which the line holds */
- inline Index dim() const { return m_direction.size(); }
+ EIGEN_DEVICE_FUNC inline Index dim() const { return m_direction.size(); }
- const VectorType& origin() const { return m_origin; }
- VectorType& origin() { return m_origin; }
+ EIGEN_DEVICE_FUNC const VectorType& origin() const { return m_origin; }
+ EIGEN_DEVICE_FUNC VectorType& origin() { return m_origin; }
- const VectorType& direction() const { return m_direction; }
- VectorType& direction() { return m_direction; }
+ EIGEN_DEVICE_FUNC const VectorType& direction() const { return m_direction; }
+ EIGEN_DEVICE_FUNC VectorType& direction() { return m_direction; }
/** \returns the squared distance of a point \a p to its projection onto the line \c *this.
* \sa distance()
*/
- RealScalar squaredDistance(const VectorType& p) const
+ EIGEN_DEVICE_FUNC RealScalar squaredDistance(const VectorType& p) const
{
VectorType diff = p - origin();
return (diff - direction().dot(diff) * direction()).squaredNorm();
@@ -87,30 +87,67 @@ public:
/** \returns the distance of a point \a p to its projection onto the line \c *this.
* \sa squaredDistance()
*/
- RealScalar distance(const VectorType& p) const { using std::sqrt; return sqrt(squaredDistance(p)); }
+ EIGEN_DEVICE_FUNC RealScalar distance(const VectorType& p) const { EIGEN_USING_STD_MATH(sqrt) return sqrt(squaredDistance(p)); }
/** \returns the projection of a point \a p onto the line \c *this. */
- VectorType projection(const VectorType& p) const
+ EIGEN_DEVICE_FUNC VectorType projection(const VectorType& p) const
{ return origin() + direction().dot(p-origin()) * direction(); }
- VectorType pointAt(const Scalar& t) const;
+ EIGEN_DEVICE_FUNC VectorType pointAt(const Scalar& t) const;
template <int OtherOptions>
- Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
+ EIGEN_DEVICE_FUNC Scalar intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
- Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
+ EIGEN_DEVICE_FUNC Scalar intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
template <int OtherOptions>
- VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
+ EIGEN_DEVICE_FUNC VectorType intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const;
- /** \returns \c *this with scalar type casted to \a NewScalarType
+ /** Applies the transformation matrix \a mat to \c *this and returns a reference to \c *this.
+ *
+ * \param mat the Dim x Dim transformation matrix
+ * \param traits specifies whether the matrix \a mat represents an #Isometry
+ * or a more generic #Affine transformation. The default is #Affine.
+ */
+ template<typename XprType>
+ EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const MatrixBase<XprType>& mat, TransformTraits traits = Affine)
+ {
+ if (traits==Affine)
+ direction() = (mat * direction()).normalized();
+ else if (traits==Isometry)
+ direction() = mat * direction();
+ else
+ {
+ eigen_assert(0 && "invalid traits value in ParametrizedLine::transform()");
+ }
+ origin() = mat * origin();
+ return *this;
+ }
+
+ /** Applies the transformation \a t to \c *this and returns a reference to \c *this.
+ *
+ * \param t the transformation of dimension Dim
+ * \param traits specifies whether the transformation \a t represents an #Isometry
+ * or a more generic #Affine transformation. The default is #Affine.
+ * Other kind of transformations are not supported.
+ */
+ template<int TrOptions>
+ EIGEN_DEVICE_FUNC inline ParametrizedLine& transform(const Transform<Scalar,AmbientDimAtCompileTime,Affine,TrOptions>& t,
+ TransformTraits traits = Affine)
+ {
+ transform(t.linear(), traits);
+ origin() += t.translation();
+ return *this;
+ }
+
+/** \returns \c *this with scalar type casted to \a NewScalarType
*
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<ParametrizedLine,
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<ParametrizedLine,
ParametrizedLine<NewScalarType,AmbientDimAtCompileTime,Options> >::type cast() const
{
return typename internal::cast_return_type<ParametrizedLine,
@@ -119,7 +156,7 @@ public:
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType,int OtherOptions>
- inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC inline explicit ParametrizedLine(const ParametrizedLine<OtherScalarType,AmbientDimAtCompileTime,OtherOptions>& other)
{
m_origin = other.origin().template cast<Scalar>();
m_direction = other.direction().template cast<Scalar>();
@@ -129,7 +166,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const ParametrizedLine& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const ParametrizedLine& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
protected:
@@ -143,7 +180,7 @@ protected:
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
-inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane)
+EIGEN_DEVICE_FUNC inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const Hyperplane<_Scalar, _AmbientDim,OtherOptions>& hyperplane)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(VectorType, 2)
direction() = hyperplane.normal().unitOrthogonal();
@@ -153,7 +190,7 @@ inline ParametrizedLine<_Scalar, _AmbientDim,_Options>::ParametrizedLine(const H
/** \returns the point at \a t along this line
*/
template <typename _Scalar, int _AmbientDim, int _Options>
-inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
+EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const
{
return origin() + (direction()*t);
@@ -163,7 +200,7 @@ ParametrizedLine<_Scalar, _AmbientDim,_Options>::pointAt(const _Scalar& t) const
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
+EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionParameter(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return -(hyperplane.offset()+hyperplane.normal().dot(origin()))
/ hyperplane.normal().dot(direction());
@@ -175,7 +212,7 @@ inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPara
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
-inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
+EIGEN_DEVICE_FUNC inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return intersectionParameter(hyperplane);
}
@@ -184,7 +221,7 @@ inline _Scalar ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersection(con
*/
template <typename _Scalar, int _AmbientDim, int _Options>
template <int OtherOptions>
-inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
+EIGEN_DEVICE_FUNC inline typename ParametrizedLine<_Scalar, _AmbientDim,_Options>::VectorType
ParametrizedLine<_Scalar, _AmbientDim,_Options>::intersectionPoint(const Hyperplane<_Scalar, _AmbientDim, OtherOptions>& hyperplane) const
{
return pointAt(intersectionParameter(hyperplane));
diff --git a/eigen/Eigen/src/Geometry/Quaternion.h b/eigen/Eigen/src/Geometry/Quaternion.h
index e89ba80..f6ef1bc 100644
--- a/eigen/Eigen/src/Geometry/Quaternion.h
+++ b/eigen/Eigen/src/Geometry/Quaternion.h
@@ -34,8 +34,9 @@ struct quaternionbase_assign_impl;
template<class Derived>
class QuaternionBase : public RotationBase<Derived, 3>
{
+ public:
typedef RotationBase<Derived, 3> Base;
-public:
+
using Base::operator*;
using Base::derived;
@@ -57,37 +58,37 @@ public:
/** \returns the \c x coefficient */
- inline Scalar x() const { return this->derived().coeffs().coeff(0); }
+ EIGEN_DEVICE_FUNC inline Scalar x() const { return this->derived().coeffs().coeff(0); }
/** \returns the \c y coefficient */
- inline Scalar y() const { return this->derived().coeffs().coeff(1); }
+ EIGEN_DEVICE_FUNC inline Scalar y() const { return this->derived().coeffs().coeff(1); }
/** \returns the \c z coefficient */
- inline Scalar z() const { return this->derived().coeffs().coeff(2); }
+ EIGEN_DEVICE_FUNC inline Scalar z() const { return this->derived().coeffs().coeff(2); }
/** \returns the \c w coefficient */
- inline Scalar w() const { return this->derived().coeffs().coeff(3); }
+ EIGEN_DEVICE_FUNC inline Scalar w() const { return this->derived().coeffs().coeff(3); }
/** \returns a reference to the \c x coefficient */
- inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
+ EIGEN_DEVICE_FUNC inline Scalar& x() { return this->derived().coeffs().coeffRef(0); }
/** \returns a reference to the \c y coefficient */
- inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
+ EIGEN_DEVICE_FUNC inline Scalar& y() { return this->derived().coeffs().coeffRef(1); }
/** \returns a reference to the \c z coefficient */
- inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
+ EIGEN_DEVICE_FUNC inline Scalar& z() { return this->derived().coeffs().coeffRef(2); }
/** \returns a reference to the \c w coefficient */
- inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
+ EIGEN_DEVICE_FUNC inline Scalar& w() { return this->derived().coeffs().coeffRef(3); }
/** \returns a read-only vector expression of the imaginary part (x,y,z) */
- inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
+ EIGEN_DEVICE_FUNC inline const VectorBlock<const Coefficients,3> vec() const { return coeffs().template head<3>(); }
/** \returns a vector expression of the imaginary part (x,y,z) */
- inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
+ EIGEN_DEVICE_FUNC inline VectorBlock<Coefficients,3> vec() { return coeffs().template head<3>(); }
/** \returns a read-only vector expression of the coefficients (x,y,z,w) */
- inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
+ EIGEN_DEVICE_FUNC inline const typename internal::traits<Derived>::Coefficients& coeffs() const { return derived().coeffs(); }
/** \returns a vector expression of the coefficients (x,y,z,w) */
- inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
+ EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Coefficients& coeffs() { return derived().coeffs(); }
- EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
- template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& operator=(const QuaternionBase<Derived>& other);
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const QuaternionBase<OtherDerived>& other);
// disabled this copy operator as it is giving very strange compilation errors when compiling
// test_stdvector with GCC 4.4.2. This looks like a GCC bug though, so feel free to re-enable it if it's
@@ -96,72 +97,72 @@ public:
// Derived& operator=(const QuaternionBase& other)
// { return operator=<Derived>(other); }
- Derived& operator=(const AngleAxisType& aa);
- template<class OtherDerived> Derived& operator=(const MatrixBase<OtherDerived>& m);
+ EIGEN_DEVICE_FUNC Derived& operator=(const AngleAxisType& aa);
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Derived& operator=(const MatrixBase<OtherDerived>& m);
/** \returns a quaternion representing an identity rotation
* \sa MatrixBase::Identity()
*/
- static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
+ EIGEN_DEVICE_FUNC static inline Quaternion<Scalar> Identity() { return Quaternion<Scalar>(Scalar(1), Scalar(0), Scalar(0), Scalar(0)); }
/** \sa QuaternionBase::Identity(), MatrixBase::setIdentity()
*/
- inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
+ EIGEN_DEVICE_FUNC inline QuaternionBase& setIdentity() { coeffs() << Scalar(0), Scalar(0), Scalar(0), Scalar(1); return *this; }
/** \returns the squared norm of the quaternion's coefficients
* \sa QuaternionBase::norm(), MatrixBase::squaredNorm()
*/
- inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
+ EIGEN_DEVICE_FUNC inline Scalar squaredNorm() const { return coeffs().squaredNorm(); }
/** \returns the norm of the quaternion's coefficients
* \sa QuaternionBase::squaredNorm(), MatrixBase::norm()
*/
- inline Scalar norm() const { return coeffs().norm(); }
+ EIGEN_DEVICE_FUNC inline Scalar norm() const { return coeffs().norm(); }
/** Normalizes the quaternion \c *this
* \sa normalized(), MatrixBase::normalize() */
- inline void normalize() { coeffs().normalize(); }
+ EIGEN_DEVICE_FUNC inline void normalize() { coeffs().normalize(); }
/** \returns a normalized copy of \c *this
* \sa normalize(), MatrixBase::normalized() */
- inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
+ EIGEN_DEVICE_FUNC inline Quaternion<Scalar> normalized() const { return Quaternion<Scalar>(coeffs().normalized()); }
/** \returns the dot product of \c *this and \a other
* Geometrically speaking, the dot product of two unit quaternions
* corresponds to the cosine of half the angle between the two rotations.
* \sa angularDistance()
*/
- template<class OtherDerived> inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
+ template<class OtherDerived> EIGEN_DEVICE_FUNC inline Scalar dot(const QuaternionBase<OtherDerived>& other) const { return coeffs().dot(other.coeffs()); }
- template<class OtherDerived> Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Scalar angularDistance(const QuaternionBase<OtherDerived>& other) const;
/** \returns an equivalent 3x3 rotation matrix */
- Matrix3 toRotationMatrix() const;
+ EIGEN_DEVICE_FUNC Matrix3 toRotationMatrix() const;
/** \returns the quaternion which transform \a a into \a b through a rotation */
template<typename Derived1, typename Derived2>
- Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+ EIGEN_DEVICE_FUNC Derived& setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
- template<class OtherDerived> EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
- template<class OtherDerived> EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<Scalar> operator* (const QuaternionBase<OtherDerived>& q) const;
+ template<class OtherDerived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator*= (const QuaternionBase<OtherDerived>& q);
/** \returns the quaternion describing the inverse rotation */
- Quaternion<Scalar> inverse() const;
+ EIGEN_DEVICE_FUNC Quaternion<Scalar> inverse() const;
/** \returns the conjugated quaternion */
- Quaternion<Scalar> conjugate() const;
+ EIGEN_DEVICE_FUNC Quaternion<Scalar> conjugate() const;
- template<class OtherDerived> Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
+ template<class OtherDerived> EIGEN_DEVICE_FUNC Quaternion<Scalar> slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const;
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
- bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const QuaternionBase<OtherDerived>& other, const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
- /** return the result vector of \a v through the rotation*/
- EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
+ /** return the result vector of \a v through the rotation*/
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Vector3 _transformVector(const Vector3& v) const;
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -169,7 +170,7 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type cast() const
{
return typename internal::cast_return_type<Derived,Quaternion<NewScalarType> >::type(derived());
}
@@ -216,8 +217,8 @@ struct traits<Quaternion<_Scalar,_Options> >
typedef _Scalar Scalar;
typedef Matrix<_Scalar,4,1,_Options> Coefficients;
enum{
- IsAligned = internal::traits<Coefficients>::Flags & AlignedBit,
- Flags = IsAligned ? (AlignedBit | LvalueBit) : LvalueBit
+ Alignment = internal::traits<Coefficients>::Alignment,
+ Flags = LvalueBit
};
};
}
@@ -225,10 +226,10 @@ struct traits<Quaternion<_Scalar,_Options> >
template<typename _Scalar, int _Options>
class Quaternion : public QuaternionBase<Quaternion<_Scalar,_Options> >
{
+public:
typedef QuaternionBase<Quaternion<_Scalar,_Options> > Base;
- enum { IsAligned = internal::traits<Quaternion>::IsAligned };
+ enum { NeedsAlignment = internal::traits<Quaternion>::Alignment>0 };
-public:
typedef _Scalar Scalar;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Quaternion)
@@ -238,7 +239,7 @@ public:
typedef typename Base::AngleAxisType AngleAxisType;
/** Default constructor leaving the quaternion uninitialized. */
- inline Quaternion() {}
+ EIGEN_DEVICE_FUNC inline Quaternion() {}
/** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from
* its four coefficients \a w, \a x, \a y and \a z.
@@ -247,36 +248,42 @@ public:
* while internally the coefficients are stored in the following order:
* [\c x, \c y, \c z, \c w]
*/
- inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
+ EIGEN_DEVICE_FUNC inline Quaternion(const Scalar& w, const Scalar& x, const Scalar& y, const Scalar& z) : m_coeffs(x, y, z, w){}
/** Constructs and initialize a quaternion from the array data */
- inline Quaternion(const Scalar* data) : m_coeffs(data) {}
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const Scalar* data) : m_coeffs(data) {}
/** Copy constructor */
- template<class Derived> EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
+ template<class Derived> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion(const QuaternionBase<Derived>& other) { this->Base::operator=(other); }
/** Constructs and initializes a quaternion from the angle-axis \a aa */
- explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; }
/** Constructs and initializes a quaternion from either:
* - a rotation matrix expression,
* - a 4D vector expression representing quaternion coefficients.
*/
template<typename Derived>
- explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const MatrixBase<Derived>& other) { *this = other; }
/** Explicit copy constructor with scalar conversion */
template<typename OtherScalar, int OtherOptions>
- explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
+ EIGEN_DEVICE_FUNC explicit inline Quaternion(const Quaternion<OtherScalar, OtherOptions>& other)
{ m_coeffs = other.coeffs().template cast<Scalar>(); }
+ EIGEN_DEVICE_FUNC static Quaternion UnitRandom();
+
template<typename Derived1, typename Derived2>
- static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
+ EIGEN_DEVICE_FUNC static Quaternion FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b);
- inline Coefficients& coeffs() { return m_coeffs;}
- inline const Coefficients& coeffs() const { return m_coeffs;}
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs;}
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
- EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(IsAligned))
+ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF(bool(NeedsAlignment))
+
+#ifdef EIGEN_QUATERNION_PLUGIN
+# include EIGEN_QUATERNION_PLUGIN
+#endif
protected:
Coefficients m_coeffs;
@@ -336,9 +343,9 @@ template<typename _Scalar, int _Options>
class Map<const Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<const Quaternion<_Scalar>, _Options> >
{
+ public:
typedef QuaternionBase<Map<const Quaternion<_Scalar>, _Options> > Base;
- public:
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
@@ -350,9 +357,9 @@ class Map<const Quaternion<_Scalar>, _Options >
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
- EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
+ EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(const Scalar* coeffs) : m_coeffs(coeffs) {}
- inline const Coefficients& coeffs() const { return m_coeffs;}
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs;}
protected:
const Coefficients m_coeffs;
@@ -373,9 +380,9 @@ template<typename _Scalar, int _Options>
class Map<Quaternion<_Scalar>, _Options >
: public QuaternionBase<Map<Quaternion<_Scalar>, _Options> >
{
+ public:
typedef QuaternionBase<Map<Quaternion<_Scalar>, _Options> > Base;
- public:
typedef _Scalar Scalar;
typedef typename internal::traits<Map>::Coefficients Coefficients;
EIGEN_INHERIT_ASSIGNMENT_OPERATORS(Map)
@@ -387,10 +394,10 @@ class Map<Quaternion<_Scalar>, _Options >
* \code *coeffs == {x, y, z, w} \endcode
*
* If the template parameter _Options is set to #Aligned, then the pointer coeffs must be aligned. */
- EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
+ EIGEN_DEVICE_FUNC explicit EIGEN_STRONG_INLINE Map(Scalar* coeffs) : m_coeffs(coeffs) {}
- inline Coefficients& coeffs() { return m_coeffs; }
- inline const Coefficients& coeffs() const { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline Coefficients& coeffs() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC inline const Coefficients& coeffs() const { return m_coeffs; }
protected:
Coefficients m_coeffs;
@@ -418,7 +425,7 @@ typedef Map<Quaternion<double>, Aligned> QuaternionMapAlignedd;
namespace internal {
template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options> struct quat_product
{
- static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived1>& a, const QuaternionBase<Derived2>& b){
return Quaternion<Scalar>
(
a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(),
@@ -433,20 +440,20 @@ template<int Arch, class Derived1, class Derived2, typename Scalar, int _Options
/** \returns the concatenation of two rotations as a quaternion-quaternion product */
template <class Derived>
template <class OtherDerived>
-EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::operator* (const QuaternionBase<OtherDerived>& other) const
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
return internal::quat_product<Architecture::Target, Derived, OtherDerived,
typename internal::traits<Derived>::Scalar,
- internal::traits<Derived>::IsAligned && internal::traits<OtherDerived>::IsAligned>::run(*this, other);
+ EIGEN_PLAIN_ENUM_MIN(internal::traits<Derived>::Alignment, internal::traits<OtherDerived>::Alignment)>::run(*this, other);
}
/** \sa operator*(Quaternion) */
template <class Derived>
template <class OtherDerived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const QuaternionBase<OtherDerived>& other)
{
derived() = derived() * other.derived();
return derived();
@@ -460,7 +467,7 @@ EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator*= (const Quaterni
* - Via a Matrix3: 24 + 15n
*/
template <class Derived>
-EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename QuaternionBase<Derived>::Vector3
QuaternionBase<Derived>::_transformVector(const Vector3& v) const
{
// Note that this algorithm comes from the optimization by hand
@@ -474,7 +481,7 @@ QuaternionBase<Derived>::_transformVector(const Vector3& v) const
}
template<class Derived>
-EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(const QuaternionBase<Derived>& other)
{
coeffs() = other.coeffs();
return derived();
@@ -482,7 +489,7 @@ EIGEN_STRONG_INLINE QuaternionBase<Derived>& QuaternionBase<Derived>::operator=(
template<class Derived>
template<class OtherDerived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const QuaternionBase<OtherDerived>& other)
{
coeffs() = other.coeffs();
return derived();
@@ -491,10 +498,10 @@ EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const Quaternion
/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this
*/
template<class Derived>
-EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
+EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisType& aa)
{
- using std::cos;
- using std::sin;
+ EIGEN_USING_STD_MATH(cos)
+ EIGEN_USING_STD_MATH(sin)
Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings
this->w() = cos(ha);
this->vec() = sin(ha) * aa.axis();
@@ -509,7 +516,7 @@ EIGEN_STRONG_INLINE Derived& QuaternionBase<Derived>::operator=(const AngleAxisT
template<class Derived>
template<class MatrixDerived>
-inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
+EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerived>& xpr)
{
EIGEN_STATIC_ASSERT((internal::is_same<typename Derived::Scalar, typename MatrixDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
@@ -521,7 +528,7 @@ inline Derived& QuaternionBase<Derived>::operator=(const MatrixBase<MatrixDerive
* be normalized, otherwise the result is undefined.
*/
template<class Derived>
-inline typename QuaternionBase<Derived>::Matrix3
+EIGEN_DEVICE_FUNC inline typename QuaternionBase<Derived>::Matrix3
QuaternionBase<Derived>::toRotationMatrix(void) const
{
// NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!)
@@ -568,10 +575,9 @@ QuaternionBase<Derived>::toRotationMatrix(void) const
*/
template<class Derived>
template<typename Derived1, typename Derived2>
-inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+EIGEN_DEVICE_FUNC inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
- using std::max;
- using std::sqrt;
+ EIGEN_USING_STD_MATH(sqrt)
Vector3 v0 = a.normalized();
Vector3 v1 = b.normalized();
Scalar c = v1.dot(v0);
@@ -586,7 +592,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
// which yields a singular value problem
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
{
- c = (max)(c,Scalar(-1));
+ c = numext::maxi(c,Scalar(-1));
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
JacobiSVD<Matrix<Scalar,2,3> > svd(m, ComputeFullV);
Vector3 axis = svd.matrixV().col(2);
@@ -605,6 +611,24 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
return derived();
}
+/** \returns a random unit quaternion following a uniform distribution law on SO(3)
+ *
+ * \note The implementation is based on http://planning.cs.uiuc.edu/node198.html
+ */
+template<typename Scalar, int Options>
+EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::UnitRandom()
+{
+ EIGEN_USING_STD_MATH(sqrt)
+ EIGEN_USING_STD_MATH(sin)
+ EIGEN_USING_STD_MATH(cos)
+ const Scalar u1 = internal::random<Scalar>(0, 1),
+ u2 = internal::random<Scalar>(0, 2*EIGEN_PI),
+ u3 = internal::random<Scalar>(0, 2*EIGEN_PI);
+ const Scalar a = sqrt(1 - u1),
+ b = sqrt(u1);
+ return Quaternion (a * sin(u2), a * cos(u2), b * sin(u3), b * cos(u3));
+}
+
/** Returns a quaternion representing a rotation between
* the two arbitrary vectors \a a and \a b. In other words, the built
@@ -618,7 +642,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
*/
template<typename Scalar, int Options>
template<typename Derived1, typename Derived2>
-Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
+EIGEN_DEVICE_FUNC Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const MatrixBase<Derived1>& a, const MatrixBase<Derived2>& b)
{
Quaternion quat;
quat.setFromTwoVectors(a, b);
@@ -633,7 +657,7 @@ Quaternion<Scalar,Options> Quaternion<Scalar,Options>::FromTwoVectors(const Matr
* \sa QuaternionBase::conjugate()
*/
template <class Derived>
-inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
+EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Derived>::inverse() const
{
// FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ??
Scalar n2 = this->squaredNorm();
@@ -646,6 +670,16 @@ inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Der
}
}
+// Generic conjugate of a Quaternion
+namespace internal {
+template<int Arch, class Derived, typename Scalar, int _Options> struct quat_conj
+{
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE Quaternion<Scalar> run(const QuaternionBase<Derived>& q){
+ return Quaternion<Scalar>(q.w(),-q.x(),-q.y(),-q.z());
+ }
+};
+}
+
/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse
* if the quaternion is normalized.
* The conjugate of a quaternion represents the opposite rotation.
@@ -653,10 +687,13 @@ inline Quaternion<typename internal::traits<Derived>::Scalar> QuaternionBase<Der
* \sa Quaternion2::inverse()
*/
template <class Derived>
-inline Quaternion<typename internal::traits<Derived>::Scalar>
+EIGEN_DEVICE_FUNC inline Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::conjugate() const
{
- return Quaternion<Scalar>(this->w(),-this->x(),-this->y(),-this->z());
+ return internal::quat_conj<Architecture::Target, Derived,
+ typename internal::traits<Derived>::Scalar,
+ internal::traits<Derived>::Alignment>::run(*this);
+
}
/** \returns the angle (in radian) between two rotations
@@ -664,13 +701,12 @@ QuaternionBase<Derived>::conjugate() const
*/
template <class Derived>
template <class OtherDerived>
-inline typename internal::traits<Derived>::Scalar
+EIGEN_DEVICE_FUNC inline typename internal::traits<Derived>::Scalar
QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& other) const
{
- using std::atan2;
- using std::abs;
+ EIGEN_USING_STD_MATH(atan2)
Quaternion<Scalar> d = (*this) * other.conjugate();
- return Scalar(2) * atan2( d.vec().norm(), abs(d.w()) );
+ return Scalar(2) * atan2( d.vec().norm(), numext::abs(d.w()) );
}
@@ -683,15 +719,14 @@ QuaternionBase<Derived>::angularDistance(const QuaternionBase<OtherDerived>& oth
*/
template <class Derived>
template <class OtherDerived>
-Quaternion<typename internal::traits<Derived>::Scalar>
+EIGEN_DEVICE_FUNC Quaternion<typename internal::traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(const Scalar& t, const QuaternionBase<OtherDerived>& other) const
{
- using std::acos;
- using std::sin;
- using std::abs;
- static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
+ EIGEN_USING_STD_MATH(acos)
+ EIGEN_USING_STD_MATH(sin)
+ const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
Scalar d = this->dot(other);
- Scalar absD = abs(d);
+ Scalar absD = numext::abs(d);
Scalar scale0;
Scalar scale1;
@@ -722,10 +757,10 @@ template<typename Other>
struct quaternionbase_assign_impl<Other,3,3>
{
typedef typename Other::Scalar Scalar;
- typedef DenseIndex Index;
- template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& mat)
+ template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& a_mat)
{
- using std::sqrt;
+ const typename internal::nested_eval<Other,2>::type mat(a_mat);
+ EIGEN_USING_STD_MATH(sqrt)
// This algorithm comes from "Quaternion Calculus and Fast Animation",
// Ken Shoemake, 1987 SIGGRAPH course notes
Scalar t = mat.trace();
@@ -740,13 +775,13 @@ struct quaternionbase_assign_impl<Other,3,3>
}
else
{
- DenseIndex i = 0;
+ Index i = 0;
if (mat.coeff(1,1) > mat.coeff(0,0))
i = 1;
if (mat.coeff(2,2) > mat.coeff(i,i))
i = 2;
- DenseIndex j = (i+1)%3;
- DenseIndex k = (j+1)%3;
+ Index j = (i+1)%3;
+ Index k = (j+1)%3;
t = sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0));
q.coeffs().coeffRef(i) = Scalar(0.5) * t;
@@ -763,7 +798,7 @@ template<typename Other>
struct quaternionbase_assign_impl<Other,4,1>
{
typedef typename Other::Scalar Scalar;
- template<class Derived> static inline void run(QuaternionBase<Derived>& q, const Other& vec)
+ template<class Derived> EIGEN_DEVICE_FUNC static inline void run(QuaternionBase<Derived>& q, const Other& vec)
{
q.coeffs() = vec;
}
diff --git a/eigen/Eigen/src/Geometry/Rotation2D.h b/eigen/Eigen/src/Geometry/Rotation2D.h
index a2d59fc..884b7d0 100644
--- a/eigen/Eigen/src/Geometry/Rotation2D.h
+++ b/eigen/Eigen/src/Geometry/Rotation2D.h
@@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a rotation/orientation in a 2 dimensional space.
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients
*
* This class is equivalent to a single scalar representing a counter clock wise rotation
* as a single angle in radian. It provides some additional features such as the automatic
@@ -59,41 +59,79 @@ protected:
public:
/** Construct a 2D counter clock wise rotation from the angle \a a in radian. */
- inline Rotation2D(const Scalar& a) : m_angle(a) {}
+ EIGEN_DEVICE_FUNC explicit inline Rotation2D(const Scalar& a) : m_angle(a) {}
/** Default constructor wihtout initialization. The represented rotation is undefined. */
- Rotation2D() {}
+ EIGEN_DEVICE_FUNC Rotation2D() {}
+
+ /** Construct a 2D rotation from a 2x2 rotation matrix \a mat.
+ *
+ * \sa fromRotationMatrix()
+ */
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC explicit Rotation2D(const MatrixBase<Derived>& m)
+ {
+ fromRotationMatrix(m.derived());
+ }
/** \returns the rotation angle */
- inline Scalar angle() const { return m_angle; }
+ EIGEN_DEVICE_FUNC inline Scalar angle() const { return m_angle; }
/** \returns a read-write reference to the rotation angle */
- inline Scalar& angle() { return m_angle; }
+ EIGEN_DEVICE_FUNC inline Scalar& angle() { return m_angle; }
+
+ /** \returns the rotation angle in [0,2pi] */
+ EIGEN_DEVICE_FUNC inline Scalar smallestPositiveAngle() const {
+ Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+ return tmp<Scalar(0) ? tmp + Scalar(2*EIGEN_PI) : tmp;
+ }
+
+ /** \returns the rotation angle in [-pi,pi] */
+ EIGEN_DEVICE_FUNC inline Scalar smallestAngle() const {
+ Scalar tmp = numext::fmod(m_angle,Scalar(2*EIGEN_PI));
+ if(tmp>Scalar(EIGEN_PI)) tmp -= Scalar(2*EIGEN_PI);
+ else if(tmp<-Scalar(EIGEN_PI)) tmp += Scalar(2*EIGEN_PI);
+ return tmp;
+ }
/** \returns the inverse rotation */
- inline Rotation2D inverse() const { return -m_angle; }
+ EIGEN_DEVICE_FUNC inline Rotation2D inverse() const { return Rotation2D(-m_angle); }
/** Concatenates two rotations */
- inline Rotation2D operator*(const Rotation2D& other) const
- { return m_angle + other.m_angle; }
+ EIGEN_DEVICE_FUNC inline Rotation2D operator*(const Rotation2D& other) const
+ { return Rotation2D(m_angle + other.m_angle); }
/** Concatenates two rotations */
- inline Rotation2D& operator*=(const Rotation2D& other)
+ EIGEN_DEVICE_FUNC inline Rotation2D& operator*=(const Rotation2D& other)
{ m_angle += other.m_angle; return *this; }
/** Applies the rotation to a 2D vector */
- Vector2 operator* (const Vector2& vec) const
+ EIGEN_DEVICE_FUNC Vector2 operator* (const Vector2& vec) const
{ return toRotationMatrix() * vec; }
template<typename Derived>
- Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
- Matrix2 toRotationMatrix() const;
+ EIGEN_DEVICE_FUNC Rotation2D& fromRotationMatrix(const MatrixBase<Derived>& m);
+ EIGEN_DEVICE_FUNC Matrix2 toRotationMatrix() const;
+
+ /** Set \c *this from a 2x2 rotation matrix \a mat.
+ * In other words, this function extract the rotation angle from the rotation matrix.
+ *
+ * This method is an alias for fromRotationMatrix()
+ *
+ * \sa fromRotationMatrix()
+ */
+ template<typename Derived>
+ EIGEN_DEVICE_FUNC Rotation2D& operator=(const MatrixBase<Derived>& m)
+ { return fromRotationMatrix(m.derived()); }
/** \returns the spherical interpolation between \c *this and \a other using
* parameter \a t. It is in fact equivalent to a linear interpolation.
*/
- inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
- { return m_angle * (1-t) + other.angle() * t; }
+ EIGEN_DEVICE_FUNC inline Rotation2D slerp(const Scalar& t, const Rotation2D& other) const
+ {
+ Scalar dist = Rotation2D(other.m_angle-m_angle).smallestAngle();
+ return Rotation2D(m_angle + dist*t);
+ }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -101,24 +139,25 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type cast() const
{ return typename internal::cast_return_type<Rotation2D,Rotation2D<NewScalarType> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
+ EIGEN_DEVICE_FUNC inline explicit Rotation2D(const Rotation2D<OtherScalarType>& other)
{
m_angle = Scalar(other.angle());
}
- static inline Rotation2D Identity() { return Rotation2D(0); }
+ EIGEN_DEVICE_FUNC static inline Rotation2D Identity() { return Rotation2D(0); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Rotation2D& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return internal::isApprox(m_angle,other.m_angle, prec); }
+
};
/** \ingroup Geometry_Module
@@ -134,9 +173,9 @@ typedef Rotation2D<double> Rotation2Dd;
*/
template<typename Scalar>
template<typename Derived>
-Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Derived>& mat)
{
- using std::atan2;
+ EIGEN_USING_STD_MATH(atan2)
EIGEN_STATIC_ASSERT(Derived::RowsAtCompileTime==2 && Derived::ColsAtCompileTime==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
m_angle = atan2(mat.coeff(1,0), mat.coeff(0,0));
return *this;
@@ -146,10 +185,10 @@ Rotation2D<Scalar>& Rotation2D<Scalar>::fromRotationMatrix(const MatrixBase<Deri
*/
template<typename Scalar>
typename Rotation2D<Scalar>::Matrix2
-Rotation2D<Scalar>::toRotationMatrix(void) const
+EIGEN_DEVICE_FUNC Rotation2D<Scalar>::toRotationMatrix(void) const
{
- using std::sin;
- using std::cos;
+ EIGEN_USING_STD_MATH(sin)
+ EIGEN_USING_STD_MATH(cos)
Scalar sinA = sin(m_angle);
Scalar cosA = cos(m_angle);
return (Matrix2() << cosA, -sinA, sinA, cosA).finished();
diff --git a/eigen/Eigen/src/Geometry/RotationBase.h b/eigen/Eigen/src/Geometry/RotationBase.h
index b88661d..f0ee0bd 100644
--- a/eigen/Eigen/src/Geometry/RotationBase.h
+++ b/eigen/Eigen/src/Geometry/RotationBase.h
@@ -22,8 +22,8 @@ struct rotation_base_generic_product_selector;
*
* \brief Common base class for compact rotation representations
*
- * \param Derived is the derived type, i.e., a rotation type
- * \param _Dim the dimension of the space
+ * \tparam Derived is the derived type, i.e., a rotation type
+ * \tparam _Dim the dimension of the space
*/
template<typename Derived, int _Dim>
class RotationBase
@@ -38,26 +38,26 @@ class RotationBase
typedef Matrix<Scalar,Dim,1> VectorType;
public:
- inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
- inline Derived& derived() { return *static_cast<Derived*>(this); }
+ EIGEN_DEVICE_FUNC inline const Derived& derived() const { return *static_cast<const Derived*>(this); }
+ EIGEN_DEVICE_FUNC inline Derived& derived() { return *static_cast<Derived*>(this); }
/** \returns an equivalent rotation matrix */
- inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
+ EIGEN_DEVICE_FUNC inline RotationMatrixType toRotationMatrix() const { return derived().toRotationMatrix(); }
/** \returns an equivalent rotation matrix
* This function is added to be conform with the Transform class' naming scheme.
*/
- inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
+ EIGEN_DEVICE_FUNC inline RotationMatrixType matrix() const { return derived().toRotationMatrix(); }
/** \returns the inverse rotation */
- inline Derived inverse() const { return derived().inverse(); }
+ EIGEN_DEVICE_FUNC inline Derived inverse() const { return derived().inverse(); }
/** \returns the concatenation of the rotation \c *this with a translation \a t */
- inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
+ EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Isometry> operator*(const Translation<Scalar,Dim>& t) const
{ return Transform<Scalar,Dim,Isometry>(*this) * t; }
/** \returns the concatenation of the rotation \c *this with a uniform scaling \a s */
- inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
+ EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const UniformScaling<Scalar>& s) const
{ return toRotationMatrix() * s.factor(); }
/** \returns the concatenation of the rotation \c *this with a generic expression \a e
@@ -67,17 +67,17 @@ class RotationBase
* - a vector of size Dim
*/
template<typename OtherDerived>
- EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE typename internal::rotation_base_generic_product_selector<Derived,OtherDerived,OtherDerived::IsVectorAtCompileTime>::ReturnType
operator*(const EigenBase<OtherDerived>& e) const
{ return internal::rotation_base_generic_product_selector<Derived,OtherDerived>::run(derived(), e.derived()); }
/** \returns the concatenation of a linear transformation \a l with the rotation \a r */
template<typename OtherDerived> friend
- inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
+ EIGEN_DEVICE_FUNC inline RotationMatrixType operator*(const EigenBase<OtherDerived>& l, const Derived& r)
{ return l.derived() * r.toRotationMatrix(); }
/** \returns the concatenation of a scaling \a l with the rotation \a r */
- friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
+ EIGEN_DEVICE_FUNC friend inline Transform<Scalar,Dim,Affine> operator*(const DiagonalMatrix<Scalar,Dim>& l, const Derived& r)
{
Transform<Scalar,Dim,Affine> res(r);
res.linear().applyOnTheLeft(l);
@@ -86,11 +86,11 @@ class RotationBase
/** \returns the concatenation of the rotation \c *this with a transformation \a t */
template<int Mode, int Options>
- inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
+ EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator*(const Transform<Scalar,Dim,Mode,Options>& t) const
{ return toRotationMatrix() * t; }
template<typename OtherVectorType>
- inline VectorType _transformVector(const OtherVectorType& v) const
+ EIGEN_DEVICE_FUNC inline VectorType _transformVector(const OtherVectorType& v) const
{ return toRotationMatrix() * v; }
};
@@ -102,7 +102,7 @@ struct rotation_base_generic_product_selector<RotationDerived,MatrixType,false>
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,Dim> ReturnType;
- static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
+ EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const MatrixType& m)
{ return r.toRotationMatrix() * m; }
};
@@ -110,7 +110,7 @@ template<typename RotationDerived, typename Scalar, int Dim, int MaxDim>
struct rotation_base_generic_product_selector< RotationDerived, DiagonalMatrix<Scalar,Dim,MaxDim>, false >
{
typedef Transform<Scalar,Dim,Affine> ReturnType;
- static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
+ EIGEN_DEVICE_FUNC static inline ReturnType run(const RotationDerived& r, const DiagonalMatrix<Scalar,Dim,MaxDim>& m)
{
ReturnType res(r);
res.linear() *= m;
@@ -123,7 +123,7 @@ struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,tr
{
enum { Dim = RotationDerived::Dim };
typedef Matrix<typename RotationDerived::Scalar,Dim,1> ReturnType;
- static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE ReturnType run(const RotationDerived& r, const OtherVectorType& v)
{
return r._transformVector(v);
}
@@ -137,7 +137,7 @@ struct rotation_base_generic_product_selector<RotationDerived,OtherVectorType,tr
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
+EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::Matrix(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Matrix,int(OtherDerived::Dim),int(OtherDerived::Dim))
@@ -150,7 +150,7 @@ Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
*/
template<typename _Scalar, int _Rows, int _Cols, int _Storage, int _MaxRows, int _MaxCols>
template<typename OtherDerived>
-Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
+EIGEN_DEVICE_FUNC Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>&
Matrix<_Scalar, _Rows, _Cols, _Storage, _MaxRows, _MaxCols>
::operator=(const RotationBase<OtherDerived,ColsAtCompileTime>& r)
{
@@ -164,8 +164,8 @@ namespace internal {
*
* Helper function to return an arbitrary rotation object to a rotation matrix.
*
- * \param Scalar the numeric type of the matrix coefficients
- * \param Dim the dimension of the current space
+ * \tparam Scalar the numeric type of the matrix coefficients
+ * \tparam Dim the dimension of the current space
*
* It returns a Dim x Dim fixed size matrix.
*
@@ -179,20 +179,20 @@ namespace internal {
* \sa class Transform, class Rotation2D, class Quaternion, class AngleAxis
*/
template<typename Scalar, int Dim>
-static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
+EIGEN_DEVICE_FUNC static inline Matrix<Scalar,2,2> toRotationMatrix(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Dim==2,YOU_MADE_A_PROGRAMMING_MISTAKE)
return Rotation2D<Scalar>(s).toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
-static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
+EIGEN_DEVICE_FUNC static inline Matrix<Scalar,Dim,Dim> toRotationMatrix(const RotationBase<OtherDerived,Dim>& r)
{
return r.toRotationMatrix();
}
template<typename Scalar, int Dim, typename OtherDerived>
-static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
+EIGEN_DEVICE_FUNC static inline const MatrixBase<OtherDerived>& toRotationMatrix(const MatrixBase<OtherDerived>& mat)
{
EIGEN_STATIC_ASSERT(OtherDerived::RowsAtCompileTime==Dim && OtherDerived::ColsAtCompileTime==Dim,
YOU_MADE_A_PROGRAMMING_MISTAKE)
diff --git a/eigen/Eigen/src/Geometry/Scaling.h b/eigen/Eigen/src/Geometry/Scaling.h
index 1c25f36..f58ca03 100644
--- a/eigen/Eigen/src/Geometry/Scaling.h
+++ b/eigen/Eigen/src/Geometry/Scaling.h
@@ -18,7 +18,7 @@ namespace Eigen {
*
* \brief Represents a generic uniform scaling transformation
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients.
*
* This class represent a uniform scaling transformation. It is the return
* type of Scaling(Scalar), and most of the time this is the only way it
@@ -62,10 +62,10 @@ public:
template<int Dim, int Mode, int Options>
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
{
- Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
- res.prescale(factor());
- return res;
-}
+ Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
+ res.prescale(factor());
+ return res;
+ }
/** Concatenates a uniform scaling and a linear transformation matrix */
// TODO returns an expression
@@ -104,40 +104,44 @@ public:
};
-/** Concatenates a linear transformation matrix and a uniform scaling */
+/** \addtogroup Geometry_Module */
+//@{
+
+/** Concatenates a linear transformation matrix and a uniform scaling
+ * \relates UniformScaling
+ */
// NOTE this operator is defiend in MatrixBase and not as a friend function
// of UniformScaling to fix an internal crash of Intel's ICC
-template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
-MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
-{ return derived() * s.factor(); }
+template<typename Derived,typename Scalar>
+EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(Derived,Scalar,product)
+operator*(const MatrixBase<Derived>& matrix, const UniformScaling<Scalar>& s)
+{ return matrix.derived() * s.factor(); }
/** Constructs a uniform scaling from scale factor \a s */
-static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
+inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
/** Constructs a uniform scaling from scale factor \a s */
-static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
+inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
/** Constructs a uniform scaling from scale factor \a s */
template<typename RealScalar>
-static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
+inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
{ return UniformScaling<std::complex<RealScalar> >(s); }
/** Constructs a 2D axis aligned scaling */
template<typename Scalar>
-static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
+inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
/** Constructs a 3D axis aligned scaling */
template<typename Scalar>
-static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
+inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
/** Constructs an axis aligned scaling expression from vector expression \a coeffs
* This is an alias for coeffs.asDiagonal()
*/
template<typename Derived>
-static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
+inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
{ return coeffs.asDiagonal(); }
-/** \addtogroup Geometry_Module */
-//@{
/** \deprecated */
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
/** \deprecated */
diff --git a/eigen/Eigen/src/Geometry/Transform.h b/eigen/Eigen/src/Geometry/Transform.h
index 0186f3b..2d36dfa 100644
--- a/eigen/Eigen/src/Geometry/Transform.h
+++ b/eigen/Eigen/src/Geometry/Transform.h
@@ -32,7 +32,8 @@ template< typename TransformType,
typename MatrixType,
int Case = transform_traits<TransformType>::IsProjective ? 0
: int(MatrixType::RowsAtCompileTime) == int(transform_traits<TransformType>::HDim) ? 1
- : 2>
+ : 2,
+ int RhsCols = MatrixType::ColsAtCompileTime>
struct transform_right_product_impl;
template< typename Other,
@@ -62,6 +63,22 @@ struct transform_construct_from_matrix;
template<typename TransformType> struct transform_take_affine_part;
+template<typename _Scalar, int _Dim, int _Mode, int _Options>
+struct traits<Transform<_Scalar,_Dim,_Mode,_Options> >
+{
+ typedef _Scalar Scalar;
+ typedef Eigen::Index StorageIndex;
+ typedef Dense StorageKind;
+ enum {
+ Dim1 = _Dim==Dynamic ? _Dim : _Dim + 1,
+ RowsAtCompileTime = _Mode==Projective ? Dim1 : _Dim,
+ ColsAtCompileTime = Dim1,
+ MaxRowsAtCompileTime = RowsAtCompileTime,
+ MaxColsAtCompileTime = ColsAtCompileTime,
+ Flags = 0
+ };
+};
+
template<int Mode> struct transform_make_affine;
} // end namespace internal
@@ -176,7 +193,7 @@ template<int Mode> struct transform_make_affine;
* preprocessor token EIGEN_QT_SUPPORT is defined.
*
* This class can be extended with the help of the plugin mechanism described on the page
- * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
+ * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_TRANSFORM_PLUGIN.
*
* \sa class Matrix, class Quaternion
*/
@@ -194,7 +211,8 @@ public:
};
/** the scalar type of the coefficients */
typedef _Scalar Scalar;
- typedef DenseIndex Index;
+ typedef Eigen::Index StorageIndex;
+ typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
/** type of the matrix used to represent the transformation */
typedef typename internal::make_proper_matrix_type<Scalar,Rows,HDim,Options>::type MatrixType;
/** constified MatrixType */
@@ -216,9 +234,9 @@ public:
/** type of a vector */
typedef Matrix<Scalar,Dim,1> VectorType;
/** type of a read/write reference to the translation part of the rotation */
- typedef Block<MatrixType,Dim,1,int(Mode)==(AffineCompact)> TranslationPart;
+ typedef Block<MatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> TranslationPart;
/** type of a read reference to the translation part of the rotation */
- typedef const Block<ConstMatrixType,Dim,1,int(Mode)==(AffineCompact)> ConstTranslationPart;
+ typedef const Block<ConstMatrixType,Dim,1,!(internal::traits<MatrixType>::Flags & RowMajorBit)> ConstTranslationPart;
/** corresponding translation type */
typedef Translation<Scalar,Dim> TranslationType;
@@ -235,43 +253,43 @@ public:
/** Default constructor without initialization of the meaningful coefficients.
* If Mode==Affine, then the last row is set to [0 ... 0 1] */
- inline Transform()
+ EIGEN_DEVICE_FUNC inline Transform()
{
check_template_params();
internal::transform_make_affine<(int(Mode)==Affine) ? Affine : AffineCompact>::run(m_matrix);
}
- inline Transform(const Transform& other)
+ EIGEN_DEVICE_FUNC inline Transform(const Transform& other)
{
check_template_params();
m_matrix = other.m_matrix;
}
- inline explicit Transform(const TranslationType& t)
+ EIGEN_DEVICE_FUNC inline explicit Transform(const TranslationType& t)
{
check_template_params();
*this = t;
}
- inline explicit Transform(const UniformScaling<Scalar>& s)
+ EIGEN_DEVICE_FUNC inline explicit Transform(const UniformScaling<Scalar>& s)
{
check_template_params();
*this = s;
}
template<typename Derived>
- inline explicit Transform(const RotationBase<Derived, Dim>& r)
+ EIGEN_DEVICE_FUNC inline explicit Transform(const RotationBase<Derived, Dim>& r)
{
check_template_params();
*this = r;
}
- inline Transform& operator=(const Transform& other)
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const Transform& other)
{ m_matrix = other.m_matrix; return *this; }
typedef internal::transform_take_affine_part<Transform> take_affine_part;
/** Constructs and initializes a transformation from a Dim^2 or a (Dim+1)^2 matrix. */
template<typename OtherDerived>
- inline explicit Transform(const EigenBase<OtherDerived>& other)
+ EIGEN_DEVICE_FUNC inline explicit Transform(const EigenBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
@@ -282,7 +300,7 @@ public:
/** Set \c *this from a Dim^2 or (Dim+1)^2 matrix. */
template<typename OtherDerived>
- inline Transform& operator=(const EigenBase<OtherDerived>& other)
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const EigenBase<OtherDerived>& other)
{
EIGEN_STATIC_ASSERT((internal::is_same<Scalar,typename OtherDerived::Scalar>::value),
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY);
@@ -292,7 +310,7 @@ public:
}
template<int OtherOptions>
- inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,Mode,OtherOptions>& other)
{
check_template_params();
// only the options change, we can directly copy the matrices
@@ -300,7 +318,7 @@ public:
}
template<int OtherMode,int OtherOptions>
- inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
+ EIGEN_DEVICE_FUNC inline Transform(const Transform<Scalar,Dim,OtherMode,OtherOptions>& other)
{
check_template_params();
// prevent conversions as:
@@ -317,7 +335,7 @@ public:
OtherModeIsAffineCompact = OtherMode == int(AffineCompact)
};
- if(ModeIsAffineCompact == OtherModeIsAffineCompact)
+ if(EIGEN_CONST_CONDITIONAL(ModeIsAffineCompact == OtherModeIsAffineCompact))
{
// We need the block expression because the code is compiled for all
// combinations of transformations and will trigger a compile time error
@@ -325,7 +343,7 @@ public:
m_matrix.template block<Dim,Dim+1>(0,0) = other.matrix().template block<Dim,Dim+1>(0,0);
makeAffine();
}
- else if(OtherModeIsAffineCompact)
+ else if(EIGEN_CONST_CONDITIONAL(OtherModeIsAffineCompact))
{
typedef typename Transform<Scalar,Dim,OtherMode,OtherOptions>::MatrixType OtherMatrixType;
internal::transform_construct_from_matrix<OtherMatrixType,Mode,Options,Dim,HDim>::run(this, other.matrix());
@@ -341,14 +359,14 @@ public:
}
template<typename OtherDerived>
- Transform(const ReturnByValue<OtherDerived>& other)
+ EIGEN_DEVICE_FUNC Transform(const ReturnByValue<OtherDerived>& other)
{
check_template_params();
other.evalTo(*this);
}
template<typename OtherDerived>
- Transform& operator=(const ReturnByValue<OtherDerived>& other)
+ EIGEN_DEVICE_FUNC Transform& operator=(const ReturnByValue<OtherDerived>& other)
{
other.evalTo(*this);
return *this;
@@ -362,33 +380,36 @@ public:
inline Transform& operator=(const QTransform& other);
inline QTransform toQTransform(void) const;
#endif
+
+ EIGEN_DEVICE_FUNC Index rows() const { return int(Mode)==int(Projective) ? m_matrix.cols() : (m_matrix.cols()-1); }
+ EIGEN_DEVICE_FUNC Index cols() const { return m_matrix.cols(); }
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operator(Index,Index) const */
- inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
+ EIGEN_DEVICE_FUNC inline Scalar operator() (Index row, Index col) const { return m_matrix(row,col); }
/** shortcut for m_matrix(row,col);
* \sa MatrixBase::operator(Index,Index) */
- inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
+ EIGEN_DEVICE_FUNC inline Scalar& operator() (Index row, Index col) { return m_matrix(row,col); }
/** \returns a read-only expression of the transformation matrix */
- inline const MatrixType& matrix() const { return m_matrix; }
+ EIGEN_DEVICE_FUNC inline const MatrixType& matrix() const { return m_matrix; }
/** \returns a writable expression of the transformation matrix */
- inline MatrixType& matrix() { return m_matrix; }
+ EIGEN_DEVICE_FUNC inline MatrixType& matrix() { return m_matrix; }
/** \returns a read-only expression of the linear part of the transformation */
- inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
+ EIGEN_DEVICE_FUNC inline ConstLinearPart linear() const { return ConstLinearPart(m_matrix,0,0); }
/** \returns a writable expression of the linear part of the transformation */
- inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
+ EIGEN_DEVICE_FUNC inline LinearPart linear() { return LinearPart(m_matrix,0,0); }
/** \returns a read-only expression of the Dim x HDim affine part of the transformation */
- inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
+ EIGEN_DEVICE_FUNC inline ConstAffinePart affine() const { return take_affine_part::run(m_matrix); }
/** \returns a writable expression of the Dim x HDim affine part of the transformation */
- inline AffinePart affine() { return take_affine_part::run(m_matrix); }
+ EIGEN_DEVICE_FUNC inline AffinePart affine() { return take_affine_part::run(m_matrix); }
/** \returns a read-only expression of the translation vector of the transformation */
- inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
+ EIGEN_DEVICE_FUNC inline ConstTranslationPart translation() const { return ConstTranslationPart(m_matrix,0,Dim); }
/** \returns a writable expression of the translation vector of the transformation */
- inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
+ EIGEN_DEVICE_FUNC inline TranslationPart translation() { return TranslationPart(m_matrix,0,Dim); }
/** \returns an expression of the product between the transform \c *this and a matrix expression \a other.
*
@@ -416,7 +437,7 @@ public:
*/
// note: this function is defined here because some compilers cannot find the respective declaration
template<typename OtherDerived>
- EIGEN_STRONG_INLINE const typename OtherDerived::PlainObject
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const typename internal::transform_right_product_impl<Transform, OtherDerived>::ResultType
operator * (const EigenBase<OtherDerived> &other) const
{ return internal::transform_right_product_impl<Transform, OtherDerived>::run(*this,other.derived()); }
@@ -428,7 +449,7 @@ public:
* \li a general transformation matrix of size Dim+1 x Dim+1.
*/
template<typename OtherDerived> friend
- inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
+ EIGEN_DEVICE_FUNC inline const typename internal::transform_left_product_impl<OtherDerived,Mode,Options,_Dim,_Dim+1>::ResultType
operator * (const EigenBase<OtherDerived> &a, const Transform &b)
{ return internal::transform_left_product_impl<OtherDerived,Mode,Options,Dim,HDim>::run(a.derived(),b); }
@@ -439,11 +460,11 @@ public:
* mode is no isometry. In that case, the returned transform is an affinity.
*/
template<typename DiagonalDerived>
- inline const TransformTimeDiagonalReturnType
+ EIGEN_DEVICE_FUNC inline const TransformTimeDiagonalReturnType
operator * (const DiagonalBase<DiagonalDerived> &b) const
{
TransformTimeDiagonalReturnType res(*this);
- res.linear() *= b;
+ res.linearExt() *= b;
return res;
}
@@ -454,27 +475,27 @@ public:
* mode is no isometry. In that case, the returned transform is an affinity.
*/
template<typename DiagonalDerived>
- friend inline TransformTimeDiagonalReturnType
+ EIGEN_DEVICE_FUNC friend inline TransformTimeDiagonalReturnType
operator * (const DiagonalBase<DiagonalDerived> &a, const Transform &b)
{
TransformTimeDiagonalReturnType res;
res.linear().noalias() = a*b.linear();
res.translation().noalias() = a*b.translation();
- if (Mode!=int(AffineCompact))
+ if (EIGEN_CONST_CONDITIONAL(Mode!=int(AffineCompact)))
res.matrix().row(Dim) = b.matrix().row(Dim);
return res;
}
template<typename OtherDerived>
- inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
+ EIGEN_DEVICE_FUNC inline Transform& operator*=(const EigenBase<OtherDerived>& other) { return *this = *this * other; }
/** Concatenates two transformations */
- inline const Transform operator * (const Transform& other) const
+ EIGEN_DEVICE_FUNC inline const Transform operator * (const Transform& other) const
{
return internal::transform_transform_product_impl<Transform,Transform>::run(*this,other);
}
- #ifdef __INTEL_COMPILER
+ #if EIGEN_COMP_ICC
private:
// this intermediate structure permits to workaround a bug in ICC 11:
// error: template instantiation resulted in unexpected function type of "Eigen::Transform<double, 3, 32, 0>
@@ -501,7 +522,7 @@ public:
#else
/** Concatenates two different transformations */
template<int OtherMode,int OtherOptions>
- inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
+ EIGEN_DEVICE_FUNC inline typename internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::ResultType
operator * (const Transform<Scalar,Dim,OtherMode,OtherOptions>& other) const
{
return internal::transform_transform_product_impl<Transform,Transform<Scalar,Dim,OtherMode,OtherOptions> >::run(*this,other);
@@ -509,79 +530,98 @@ public:
#endif
/** \sa MatrixBase::setIdentity() */
- void setIdentity() { m_matrix.setIdentity(); }
+ EIGEN_DEVICE_FUNC void setIdentity() { m_matrix.setIdentity(); }
/**
* \brief Returns an identity transformation.
* \todo In the future this function should be returning a Transform expression.
*/
- static const Transform Identity()
+ EIGEN_DEVICE_FUNC static const Transform Identity()
{
return Transform(MatrixType::Identity());
}
template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
inline Transform& scale(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
inline Transform& prescale(const MatrixBase<OtherDerived> &other);
- inline Transform& scale(const Scalar& s);
- inline Transform& prescale(const Scalar& s);
+ EIGEN_DEVICE_FUNC inline Transform& scale(const Scalar& s);
+ EIGEN_DEVICE_FUNC inline Transform& prescale(const Scalar& s);
template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
inline Transform& translate(const MatrixBase<OtherDerived> &other);
template<typename OtherDerived>
+ EIGEN_DEVICE_FUNC
inline Transform& pretranslate(const MatrixBase<OtherDerived> &other);
template<typename RotationType>
+ EIGEN_DEVICE_FUNC
inline Transform& rotate(const RotationType& rotation);
template<typename RotationType>
+ EIGEN_DEVICE_FUNC
inline Transform& prerotate(const RotationType& rotation);
- Transform& shear(const Scalar& sx, const Scalar& sy);
- Transform& preshear(const Scalar& sx, const Scalar& sy);
+ EIGEN_DEVICE_FUNC Transform& shear(const Scalar& sx, const Scalar& sy);
+ EIGEN_DEVICE_FUNC Transform& preshear(const Scalar& sx, const Scalar& sy);
- inline Transform& operator=(const TranslationType& t);
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const TranslationType& t);
+
+ EIGEN_DEVICE_FUNC
inline Transform& operator*=(const TranslationType& t) { return translate(t.vector()); }
- inline Transform operator*(const TranslationType& t) const;
+
+ EIGEN_DEVICE_FUNC inline Transform operator*(const TranslationType& t) const;
+ EIGEN_DEVICE_FUNC
inline Transform& operator=(const UniformScaling<Scalar>& t);
+
+ EIGEN_DEVICE_FUNC
inline Transform& operator*=(const UniformScaling<Scalar>& s) { return scale(s.factor()); }
- inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode))> operator*(const UniformScaling<Scalar>& s) const
+
+ EIGEN_DEVICE_FUNC
+ inline TransformTimeDiagonalReturnType operator*(const UniformScaling<Scalar>& s) const
{
- Transform<Scalar,Dim,(int(Mode)==int(Isometry)?int(Affine):int(Mode)),Options> res = *this;
+ TransformTimeDiagonalReturnType res = *this;
res.scale(s.factor());
return res;
}
- inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linear() *= s; return *this; }
+ EIGEN_DEVICE_FUNC
+ inline Transform& operator*=(const DiagonalMatrix<Scalar,Dim>& s) { linearExt() *= s; return *this; }
template<typename Derived>
- inline Transform& operator=(const RotationBase<Derived,Dim>& r);
+ EIGEN_DEVICE_FUNC inline Transform& operator=(const RotationBase<Derived,Dim>& r);
template<typename Derived>
- inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
+ EIGEN_DEVICE_FUNC inline Transform& operator*=(const RotationBase<Derived,Dim>& r) { return rotate(r.toRotationMatrix()); }
template<typename Derived>
- inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
+ EIGEN_DEVICE_FUNC inline Transform operator*(const RotationBase<Derived,Dim>& r) const;
- const LinearMatrixType rotation() const;
+ EIGEN_DEVICE_FUNC const LinearMatrixType rotation() const;
template<typename RotationMatrixType, typename ScalingMatrixType>
+ EIGEN_DEVICE_FUNC
void computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const;
template<typename ScalingMatrixType, typename RotationMatrixType>
+ EIGEN_DEVICE_FUNC
void computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const;
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
+ EIGEN_DEVICE_FUNC
Transform& fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale);
+ EIGEN_DEVICE_FUNC
inline Transform inverse(TransformTraits traits = (TransformTraits)Mode) const;
/** \returns a const pointer to the column major internal matrix */
- const Scalar* data() const { return m_matrix.data(); }
+ EIGEN_DEVICE_FUNC const Scalar* data() const { return m_matrix.data(); }
/** \returns a non-const pointer to the column major internal matrix */
- Scalar* data() { return m_matrix.data(); }
+ EIGEN_DEVICE_FUNC Scalar* data() { return m_matrix.data(); }
/** \returns \c *this with scalar type casted to \a NewScalarType
*
@@ -589,12 +629,12 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type cast() const
{ return typename internal::cast_return_type<Transform,Transform<NewScalarType,Dim,Mode,Options> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
+ EIGEN_DEVICE_FUNC inline explicit Transform(const Transform<OtherScalarType,Dim,Mode,Options>& other)
{
check_template_params();
m_matrix = other.matrix().template cast<Scalar>();
@@ -604,12 +644,12 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Transform& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_matrix.isApprox(other.m_matrix, prec); }
/** Sets the last row to [0 ... 0 1]
*/
- void makeAffine()
+ EIGEN_DEVICE_FUNC void makeAffine()
{
internal::transform_make_affine<int(Mode)>::run(m_matrix);
}
@@ -618,26 +658,26 @@ public:
* \returns the Dim x Dim linear part if the transformation is affine,
* and the HDim x Dim part for projective transformations.
*/
- inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
+ EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt()
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
/** \internal
* \returns the Dim x Dim linear part if the transformation is affine,
* and the HDim x Dim part for projective transformations.
*/
- inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
+ EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,Dim> linearExt() const
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,Dim>(0,0); }
/** \internal
* \returns the translation part if the transformation is affine,
* and the last column for projective transformations.
*/
- inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
+ EIGEN_DEVICE_FUNC inline Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt()
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
/** \internal
* \returns the translation part if the transformation is affine,
* and the last column for projective transformations.
*/
- inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
+ EIGEN_DEVICE_FUNC inline const Block<MatrixType,int(Mode)==int(Projective)?HDim:Dim,1> translationExt() const
{ return m_matrix.template block<int(Mode)==int(Projective)?HDim:Dim,1>(0,Dim); }
@@ -647,7 +687,7 @@ public:
protected:
#ifndef EIGEN_PARSED_BY_DOXYGEN
- static EIGEN_STRONG_INLINE void check_template_params()
+ EIGEN_DEVICE_FUNC static EIGEN_STRONG_INLINE void check_template_params()
{
EIGEN_STATIC_ASSERT((Options & (DontAlign|RowMajor)) == Options, INVALID_MATRIX_TEMPLATE_PARAMETERS)
}
@@ -715,9 +755,13 @@ template<typename Scalar, int Dim, int Mode,int Options>
Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const QMatrix& other)
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- m_matrix << other.m11(), other.m21(), other.dx(),
- other.m12(), other.m22(), other.dy(),
- 0, 0, 1;
+ if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy();
+ else
+ m_matrix << other.m11(), other.m21(), other.dx(),
+ other.m12(), other.m22(), other.dy(),
+ 0, 0, 1;
return *this;
}
@@ -757,7 +801,7 @@ Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator
{
check_template_params();
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- if (Mode == int(AffineCompact))
+ if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
m_matrix << other.m11(), other.m21(), other.dx(),
other.m12(), other.m22(), other.dy();
else
@@ -775,7 +819,7 @@ template<typename Scalar, int Dim, int Mode, int Options>
QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
{
EIGEN_STATIC_ASSERT(Dim==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
- if (Mode == int(AffineCompact))
+ if (EIGEN_CONST_CONDITIONAL(Mode == int(AffineCompact)))
return QTransform(m_matrix.coeff(0,0), m_matrix.coeff(1,0),
m_matrix.coeff(0,1), m_matrix.coeff(1,1),
m_matrix.coeff(0,2), m_matrix.coeff(1,2));
@@ -796,7 +840,7 @@ QTransform Transform<Scalar,Dim,Mode,Options>::toQTransform(void) const
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
@@ -810,7 +854,7 @@ Transform<Scalar,Dim,Mode,Options>::scale(const MatrixBase<OtherDerived> &other)
* \sa prescale(Scalar)
*/
template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::scale(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
linearExt() *= s;
@@ -823,12 +867,12 @@ inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::s
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
- m_matrix.template block<Dim,HDim>(0,0).noalias() = (other.asDiagonal() * m_matrix.template block<Dim,HDim>(0,0));
+ affine().noalias() = (other.asDiagonal() * affine());
return *this;
}
@@ -837,7 +881,7 @@ Transform<Scalar,Dim,Mode,Options>::prescale(const MatrixBase<OtherDerived> &oth
* \sa scale(Scalar)
*/
template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::prescale(const Scalar& s)
{
EIGEN_STATIC_ASSERT(Mode!=int(Isometry), THIS_METHOD_IS_ONLY_FOR_SPECIFIC_TRANSFORMATIONS)
m_matrix.template topRows<Dim>() *= s;
@@ -850,7 +894,7 @@ inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::p
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
@@ -864,11 +908,11 @@ Transform<Scalar,Dim,Mode,Options>::translate(const MatrixBase<OtherDerived> &ot
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename OtherDerived>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived> &other)
{
EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,int(Dim))
- if(int(Mode)==int(Projective))
+ if(EIGEN_CONST_CONDITIONAL(int(Mode)==int(Projective)))
affine() += other * m_matrix.row(Dim);
else
translation() += other;
@@ -894,7 +938,7 @@ Transform<Scalar,Dim,Mode,Options>::pretranslate(const MatrixBase<OtherDerived>
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
{
linearExt() *= internal::toRotationMatrix<Scalar,Dim>(rotation);
@@ -910,7 +954,7 @@ Transform<Scalar,Dim,Mode,Options>::rotate(const RotationType& rotation)
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationType>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
{
m_matrix.template block<Dim,HDim>(0,0) = internal::toRotationMatrix<Scalar,Dim>(rotation)
@@ -924,7 +968,7 @@ Transform<Scalar,Dim,Mode,Options>::prerotate(const RotationType& rotation)
* \sa preshear()
*/
template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
@@ -940,7 +984,7 @@ Transform<Scalar,Dim,Mode,Options>::shear(const Scalar& sx, const Scalar& sy)
* \sa shear()
*/
template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
{
EIGEN_STATIC_ASSERT(int(Dim)==2, YOU_MADE_A_PROGRAMMING_MISTAKE)
@@ -954,7 +998,7 @@ Transform<Scalar,Dim,Mode,Options>::preshear(const Scalar& sx, const Scalar& sy)
******************************************************/
template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const TranslationType& t)
{
linear().setIdentity();
translation() = t.vector();
@@ -963,7 +1007,7 @@ inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::o
}
template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const TranslationType& t) const
{
Transform res = *this;
res.translate(t.vector());
@@ -971,7 +1015,7 @@ inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::op
}
template<typename Scalar, int Dim, int Mode, int Options>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const UniformScaling<Scalar>& s)
{
m_matrix.setZero();
linear().diagonal().fill(s.factor());
@@ -981,7 +1025,7 @@ inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::o
template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
-inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::operator=(const RotationBase<Derived,Dim>& r)
{
linear() = internal::toRotationMatrix<Scalar,Dim>(r);
translation().setZero();
@@ -991,7 +1035,7 @@ inline Transform<Scalar,Dim,Mode,Options>& Transform<Scalar,Dim,Mode,Options>::o
template<typename Scalar, int Dim, int Mode, int Options>
template<typename Derived>
-inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
+EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::operator*(const RotationBase<Derived,Dim>& r) const
{
Transform res = *this;
res.rotate(r.derived());
@@ -1010,7 +1054,7 @@ inline Transform<Scalar,Dim,Mode,Options> Transform<Scalar,Dim,Mode,Options>::op
* \sa computeRotationScaling(), computeScalingRotation(), class SVD
*/
template<typename Scalar, int Dim, int Mode, int Options>
-const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
+EIGEN_DEVICE_FUNC const typename Transform<Scalar,Dim,Mode,Options>::LinearMatrixType
Transform<Scalar,Dim,Mode,Options>::rotation() const
{
LinearMatrixType result;
@@ -1032,7 +1076,7 @@ Transform<Scalar,Dim,Mode,Options>::rotation() const
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename RotationMatrixType, typename ScalingMatrixType>
-void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
+EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixType *rotation, ScalingMatrixType *scaling) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
@@ -1048,7 +1092,7 @@ void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixTy
}
}
-/** decomposes the linear part of the transformation as a product rotation x scaling, the scaling being
+/** decomposes the linear part of the transformation as a product scaling x rotation, the scaling being
* not necessarily positive.
*
* If either pointer is zero, the corresponding computation is skipped.
@@ -1061,7 +1105,7 @@ void Transform<Scalar,Dim,Mode,Options>::computeRotationScaling(RotationMatrixTy
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename ScalingMatrixType, typename RotationMatrixType>
-void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
+EIGEN_DEVICE_FUNC void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixType *scaling, RotationMatrixType *rotation) const
{
JacobiSVD<LinearMatrixType> svd(linear(), ComputeFullU | ComputeFullV);
@@ -1082,7 +1126,7 @@ void Transform<Scalar,Dim,Mode,Options>::computeScalingRotation(ScalingMatrixTyp
*/
template<typename Scalar, int Dim, int Mode, int Options>
template<typename PositionDerived, typename OrientationType, typename ScaleDerived>
-Transform<Scalar,Dim,Mode,Options>&
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>&
Transform<Scalar,Dim,Mode,Options>::fromPositionOrientationScale(const MatrixBase<PositionDerived> &position,
const OrientationType& orientation, const MatrixBase<ScaleDerived> &scale)
{
@@ -1099,7 +1143,7 @@ template<int Mode>
struct transform_make_affine
{
template<typename MatrixType>
- static void run(MatrixType &mat)
+ EIGEN_DEVICE_FUNC static void run(MatrixType &mat)
{
static const int Dim = MatrixType::ColsAtCompileTime-1;
mat.template block<1,Dim>(Dim,0).setZero();
@@ -1110,21 +1154,21 @@ struct transform_make_affine
template<>
struct transform_make_affine<AffineCompact>
{
- template<typename MatrixType> static void run(MatrixType &) { }
+ template<typename MatrixType> EIGEN_DEVICE_FUNC static void run(MatrixType &) { }
};
// selector needed to avoid taking the inverse of a 3x4 matrix
template<typename TransformType, int Mode=TransformType::Mode>
struct projective_transform_inverse
{
- static inline void run(const TransformType&, TransformType&)
+ EIGEN_DEVICE_FUNC static inline void run(const TransformType&, TransformType&)
{}
};
template<typename TransformType>
struct projective_transform_inverse<TransformType, Projective>
{
- static inline void run(const TransformType& m, TransformType& res)
+ EIGEN_DEVICE_FUNC static inline void run(const TransformType& m, TransformType& res)
{
res.matrix() = m.matrix().inverse();
}
@@ -1154,7 +1198,7 @@ struct projective_transform_inverse<TransformType, Projective>
* \sa MatrixBase::inverse()
*/
template<typename Scalar, int Dim, int Mode, int Options>
-Transform<Scalar,Dim,Mode,Options>
+EIGEN_DEVICE_FUNC Transform<Scalar,Dim,Mode,Options>
Transform<Scalar,Dim,Mode,Options>::inverse(TransformTraits hint) const
{
Transform res;
@@ -1263,8 +1307,8 @@ struct transform_product_result
};
};
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 0 >
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 0, RhsCols>
{
typedef typename MatrixType::PlainObject ResultType;
@@ -1274,8 +1318,8 @@ struct transform_right_product_impl< TransformType, MatrixType, 0 >
}
};
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 1 >
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 1, RhsCols>
{
enum {
Dim = TransformType::Dim,
@@ -1300,8 +1344,8 @@ struct transform_right_product_impl< TransformType, MatrixType, 1 >
}
};
-template< typename TransformType, typename MatrixType >
-struct transform_right_product_impl< TransformType, MatrixType, 2 >
+template< typename TransformType, typename MatrixType, int RhsCols>
+struct transform_right_product_impl< TransformType, MatrixType, 2, RhsCols>
{
enum {
Dim = TransformType::Dim,
@@ -1324,6 +1368,30 @@ struct transform_right_product_impl< TransformType, MatrixType, 2 >
}
};
+template< typename TransformType, typename MatrixType >
+struct transform_right_product_impl< TransformType, MatrixType, 2, 1> // rhs is a vector of size Dim
+{
+ typedef typename TransformType::MatrixType TransformMatrix;
+ enum {
+ Dim = TransformType::Dim,
+ HDim = TransformType::HDim,
+ OtherRows = MatrixType::RowsAtCompileTime,
+ WorkingRows = EIGEN_PLAIN_ENUM_MIN(TransformMatrix::RowsAtCompileTime,HDim)
+ };
+
+ typedef typename MatrixType::PlainObject ResultType;
+
+ static EIGEN_STRONG_INLINE ResultType run(const TransformType& T, const MatrixType& other)
+ {
+ EIGEN_STATIC_ASSERT(OtherRows==Dim, YOU_MIXED_MATRICES_OF_DIFFERENT_SIZES);
+
+ Matrix<typename ResultType::Scalar, Dim+1, 1> rhs;
+ rhs.template head<Dim>() = other; rhs[Dim] = typename ResultType::Scalar(1);
+ Matrix<typename ResultType::Scalar, WorkingRows, 1> res(T.matrix() * rhs);
+ return res.template head<Dim>();
+ }
+};
+
/**********************************************************
*** Specializations of operator* with lhs EigenBase ***
**********************************************************/
diff --git a/eigen/Eigen/src/Geometry/Translation.h b/eigen/Eigen/src/Geometry/Translation.h
index 2e77986..51d9a82 100644
--- a/eigen/Eigen/src/Geometry/Translation.h
+++ b/eigen/Eigen/src/Geometry/Translation.h
@@ -18,8 +18,8 @@ namespace Eigen {
*
* \brief Represents a translation transformation
*
- * \param _Scalar the scalar type, i.e., the type of the coefficients.
- * \param _Dim the dimension of the space, can be a compile time value or Dynamic
+ * \tparam _Scalar the scalar type, i.e., the type of the coefficients.
+ * \tparam _Dim the dimension of the space, can be a compile time value or Dynamic
*
* \note This class is not aimed to be used to store a translation transformation,
* but rather to make easier the constructions and updates of Transform objects.
@@ -51,16 +51,16 @@ protected:
public:
/** Default constructor without initialization. */
- Translation() {}
+ EIGEN_DEVICE_FUNC Translation() {}
/** */
- inline Translation(const Scalar& sx, const Scalar& sy)
+ EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy)
{
eigen_assert(Dim==2);
m_coeffs.x() = sx;
m_coeffs.y() = sy;
}
/** */
- inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
+ EIGEN_DEVICE_FUNC inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz)
{
eigen_assert(Dim==3);
m_coeffs.x() = sx;
@@ -68,48 +68,48 @@ public:
m_coeffs.z() = sz;
}
/** Constructs and initialize the translation transformation from a vector of translation coefficients */
- explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
+ EIGEN_DEVICE_FUNC explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {}
/** \brief Retruns the x-translation by value. **/
- inline Scalar x() const { return m_coeffs.x(); }
+ EIGEN_DEVICE_FUNC inline Scalar x() const { return m_coeffs.x(); }
/** \brief Retruns the y-translation by value. **/
- inline Scalar y() const { return m_coeffs.y(); }
+ EIGEN_DEVICE_FUNC inline Scalar y() const { return m_coeffs.y(); }
/** \brief Retruns the z-translation by value. **/
- inline Scalar z() const { return m_coeffs.z(); }
+ EIGEN_DEVICE_FUNC inline Scalar z() const { return m_coeffs.z(); }
/** \brief Retruns the x-translation as a reference. **/
- inline Scalar& x() { return m_coeffs.x(); }
+ EIGEN_DEVICE_FUNC inline Scalar& x() { return m_coeffs.x(); }
/** \brief Retruns the y-translation as a reference. **/
- inline Scalar& y() { return m_coeffs.y(); }
+ EIGEN_DEVICE_FUNC inline Scalar& y() { return m_coeffs.y(); }
/** \brief Retruns the z-translation as a reference. **/
- inline Scalar& z() { return m_coeffs.z(); }
+ EIGEN_DEVICE_FUNC inline Scalar& z() { return m_coeffs.z(); }
- const VectorType& vector() const { return m_coeffs; }
- VectorType& vector() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC const VectorType& vector() const { return m_coeffs; }
+ EIGEN_DEVICE_FUNC VectorType& vector() { return m_coeffs; }
- const VectorType& translation() const { return m_coeffs; }
- VectorType& translation() { return m_coeffs; }
+ EIGEN_DEVICE_FUNC const VectorType& translation() const { return m_coeffs; }
+ EIGEN_DEVICE_FUNC VectorType& translation() { return m_coeffs; }
/** Concatenates two translation */
- inline Translation operator* (const Translation& other) const
+ EIGEN_DEVICE_FUNC inline Translation operator* (const Translation& other) const
{ return Translation(m_coeffs + other.m_coeffs); }
/** Concatenates a translation and a uniform scaling */
- inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
+ EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const;
/** Concatenates a translation and a linear transformation */
template<typename OtherDerived>
- inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
+ EIGEN_DEVICE_FUNC inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const;
/** Concatenates a translation and a rotation */
template<typename Derived>
- inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
+ EIGEN_DEVICE_FUNC inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const
{ return *this * IsometryTransformType(r); }
/** \returns the concatenation of a linear transformation \a l with the translation \a t */
// its a nightmare to define a templated friend function outside its declaration
template<typename OtherDerived> friend
- inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
+ EIGEN_DEVICE_FUNC inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t)
{
AffineTransformType res;
res.matrix().setZero();
@@ -122,7 +122,7 @@ public:
/** Concatenates a translation and a transformation */
template<int Mode, int Options>
- inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
+ EIGEN_DEVICE_FUNC inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const
{
Transform<Scalar,Dim,Mode> res = t;
res.pretranslate(m_coeffs);
@@ -130,8 +130,10 @@ public:
}
/** Applies translation to vector */
- inline VectorType operator* (const VectorType& other) const
- { return m_coeffs + other; }
+ template<typename Derived>
+ inline typename internal::enable_if<Derived::IsVectorAtCompileTime,VectorType>::type
+ operator* (const MatrixBase<Derived>& vec) const
+ { return m_coeffs + vec.derived(); }
/** \returns the inverse translation (opposite) */
Translation inverse() const { return Translation(-m_coeffs); }
@@ -150,19 +152,19 @@ public:
* then this function smartly returns a const reference to \c *this.
*/
template<typename NewScalarType>
- inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
+ EIGEN_DEVICE_FUNC inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const
{ return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); }
/** Copy constructor with scalar type conversion */
template<typename OtherScalarType>
- inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
+ EIGEN_DEVICE_FUNC inline explicit Translation(const Translation<OtherScalarType,Dim>& other)
{ m_coeffs = other.vector().template cast<Scalar>(); }
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
- bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
+ EIGEN_DEVICE_FUNC bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};
@@ -176,7 +178,7 @@ typedef Translation<double,3> Translation3d;
//@}
template<typename Scalar, int Dim>
-inline typename Translation<Scalar,Dim>::AffineTransformType
+EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
{
AffineTransformType res;
@@ -189,7 +191,7 @@ Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const
template<typename Scalar, int Dim>
template<typename OtherDerived>
-inline typename Translation<Scalar,Dim>::AffineTransformType
+EIGEN_DEVICE_FUNC inline typename Translation<Scalar,Dim>::AffineTransformType
Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const
{
AffineTransformType res;
diff --git a/eigen/Eigen/src/Geometry/Umeyama.h b/eigen/Eigen/src/Geometry/Umeyama.h
index 5e20662..7e933fc 100644
--- a/eigen/Eigen/src/Geometry/Umeyama.h
+++ b/eigen/Eigen/src/Geometry/Umeyama.h
@@ -97,7 +97,6 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
typedef typename internal::umeyama_transform_matrix_type<Derived, OtherDerived>::type TransformationMatrixType;
typedef typename internal::traits<TransformationMatrixType>::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
- typedef typename Derived::Index Index;
EIGEN_STATIC_ASSERT(!NumTraits<Scalar>::IsComplex, NUMERIC_TYPE_MUST_BE_REAL)
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename internal::traits<OtherDerived>::Scalar>::value),
@@ -136,22 +135,12 @@ umeyama(const MatrixBase<Derived>& src, const MatrixBase<OtherDerived>& dst, boo
// Eq. (39)
VectorType S = VectorType::Ones(m);
- if (sigma.determinant()<Scalar(0)) S(m-1) = Scalar(-1);
+
+ if ( svd.matrixU().determinant() * svd.matrixV().determinant() < 0 )
+ S(m-1) = -1;
// Eq. (40) and (43)
- const VectorType& d = svd.singularValues();
- Index rank = 0; for (Index i=0; i<m; ++i) if (!internal::isMuchSmallerThan(d.coeff(i),d.coeff(0))) ++rank;
- if (rank == m-1) {
- if ( svd.matrixU().determinant() * svd.matrixV().determinant() > Scalar(0) ) {
- Rt.block(0,0,m,m).noalias() = svd.matrixU()*svd.matrixV().transpose();
- } else {
- const Scalar s = S(m-1); S(m-1) = Scalar(-1);
- Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
- S(m-1) = s;
- }
- } else {
- Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
- }
+ Rt.block(0,0,m,m).noalias() = svd.matrixU() * S.asDiagonal() * svd.matrixV().transpose();
if (with_scaling)
{
diff --git a/eigen/Eigen/src/Geometry/arch/CMakeLists.txt b/eigen/Eigen/src/Geometry/arch/CMakeLists.txt
deleted file mode 100644
index 1267a79..0000000
--- a/eigen/Eigen/src/Geometry/arch/CMakeLists.txt
+++ /dev/null
@@ -1,6 +0,0 @@
-FILE(GLOB Eigen_Geometry_arch_SRCS "*.h")
-
-INSTALL(FILES
- ${Eigen_Geometry_arch_SRCS}
- DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/Geometry/arch COMPONENT Devel
- )
diff --git a/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h b/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h
index 3d8284f..1a86ff8 100644
--- a/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h
+++ b/eigen/Eigen/src/Geometry/arch/Geometry_SSE.h
@@ -16,35 +16,47 @@ namespace Eigen {
namespace internal {
template<class Derived, class OtherDerived>
-struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned>
+struct quat_product<Architecture::SSE, Derived, OtherDerived, float, Aligned16>
{
static inline Quaternion<float> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
{
- const __m128 mask = _mm_castsi128_ps(_mm_setr_epi32(0,0,0,0x80000000));
Quaternion<float> res;
- __m128 a = _a.coeffs().template packet<Aligned>(0);
- __m128 b = _b.coeffs().template packet<Aligned>(0);
- __m128 flip1 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),
- vec4f_swizzle1(b,2,0,1,2)),mask);
- __m128 flip2 = _mm_xor_ps(_mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),
- vec4f_swizzle1(b,0,1,2,1)),mask);
+ const __m128 mask = _mm_setr_ps(0.f,0.f,0.f,-0.f);
+ __m128 a = _a.coeffs().template packet<Aligned16>(0);
+ __m128 b = _b.coeffs().template packet<Aligned16>(0);
+ __m128 s1 = _mm_mul_ps(vec4f_swizzle1(a,1,2,0,2),vec4f_swizzle1(b,2,0,1,2));
+ __m128 s2 = _mm_mul_ps(vec4f_swizzle1(a,3,3,3,1),vec4f_swizzle1(b,0,1,2,1));
pstore(&res.x(),
_mm_add_ps(_mm_sub_ps(_mm_mul_ps(a,vec4f_swizzle1(b,3,3,3,3)),
_mm_mul_ps(vec4f_swizzle1(a,2,0,1,0),
vec4f_swizzle1(b,1,2,0,0))),
- _mm_add_ps(flip1,flip2)));
+ _mm_xor_ps(mask,_mm_add_ps(s1,s2))));
+
return res;
}
};
+template<class Derived, int Alignment>
+struct quat_conj<Architecture::SSE, Derived, float, Alignment>
+{
+ static inline Quaternion<float> run(const QuaternionBase<Derived>& q)
+ {
+ Quaternion<float> res;
+ const __m128 mask = _mm_setr_ps(-0.f,-0.f,-0.f,0.f);
+ pstore(&res.x(), _mm_xor_ps(mask, q.coeffs().template packet<Alignment>(0)));
+ return res;
+ }
+};
+
+
template<typename VectorLhs,typename VectorRhs>
struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
{
static inline typename plain_matrix_type<VectorLhs>::type
run(const VectorLhs& lhs, const VectorRhs& rhs)
{
- __m128 a = lhs.template packet<VectorLhs::Flags&AlignedBit ? Aligned : Unaligned>(0);
- __m128 b = rhs.template packet<VectorRhs::Flags&AlignedBit ? Aligned : Unaligned>(0);
+ __m128 a = lhs.template packet<traits<VectorLhs>::Alignment>(0);
+ __m128 b = rhs.template packet<traits<VectorRhs>::Alignment>(0);
__m128 mul1=_mm_mul_ps(vec4f_swizzle1(a,1,2,0,3),vec4f_swizzle1(b,2,0,1,3));
__m128 mul2=_mm_mul_ps(vec4f_swizzle1(a,2,0,1,3),vec4f_swizzle1(b,1,2,0,3));
typename plain_matrix_type<VectorLhs>::type res;
@@ -56,8 +68,8 @@ struct cross3_impl<Architecture::SSE,VectorLhs,VectorRhs,float,true>
-template<class Derived, class OtherDerived>
-struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Aligned>
+template<class Derived, class OtherDerived, int Alignment>
+struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Alignment>
{
static inline Quaternion<double> run(const QuaternionBase<Derived>& _a, const QuaternionBase<OtherDerived>& _b)
{
@@ -66,8 +78,8 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Aligned>
Quaternion<double> res;
const double* a = _a.coeffs().data();
- Packet2d b_xy = _b.coeffs().template packet<Aligned>(0);
- Packet2d b_zw = _b.coeffs().template packet<Aligned>(2);
+ Packet2d b_xy = _b.coeffs().template packet<Alignment>(0);
+ Packet2d b_zw = _b.coeffs().template packet<Alignment>(2);
Packet2d a_xx = pset1<Packet2d>(a[0]);
Packet2d a_yy = pset1<Packet2d>(a[1]);
Packet2d a_zz = pset1<Packet2d>(a[2]);
@@ -108,6 +120,20 @@ struct quat_product<Architecture::SSE, Derived, OtherDerived, double, Aligned>
}
};
+template<class Derived, int Alignment>
+struct quat_conj<Architecture::SSE, Derived, double, Alignment>
+{
+ static inline Quaternion<double> run(const QuaternionBase<Derived>& q)
+ {
+ Quaternion<double> res;
+ const __m128d mask0 = _mm_setr_pd(-0.,-0.);
+ const __m128d mask2 = _mm_setr_pd(-0.,0.);
+ pstore(&res.x(), _mm_xor_pd(mask0, q.coeffs().template packet<Alignment>(0)));
+ pstore(&res.z(), _mm_xor_pd(mask2, q.coeffs().template packet<Alignment>(2)));
+ return res;
+ }
+};
+
} // end namespace internal
} // end namespace Eigen