diff options
Diffstat (limited to 'eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h')
-rw-r--r-- | eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h | 400 |
1 files changed, 400 insertions, 0 deletions
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h new file mode 100644 index 0000000..e45c272 --- /dev/null +++ b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteCholesky.h @@ -0,0 +1,400 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_INCOMPLETE_CHOlESKY_H +#define EIGEN_INCOMPLETE_CHOlESKY_H + +#include <vector> +#include <list> + +namespace Eigen { +/** + * \brief Modified Incomplete Cholesky with dual threshold + * + * References : C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with + * Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 + * + * \tparam Scalar the scalar type of the input matrices + * \tparam _UpLo The triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * \tparam _OrderingType The ordering method to use, either AMDOrdering<> or NaturalOrdering<>. Default is AMDOrdering<int>, + * unless EIGEN_MPL2_ONLY is defined, in which case the default is NaturalOrdering<int>. + * + * \implsparsesolverconcept + * + * It performs the following incomplete factorization: \f$ S P A P' S \approx L L' \f$ + * where L is a lower triangular factor, S is a diagonal scaling matrix, and P is a + * fill-in reducing permutation as computed by the ordering method. + * + * \b Shifting \b strategy: Let \f$ B = S P A P' S \f$ be the scaled matrix on which the factorization is carried out, + * and \f$ \beta \f$ be the minimum value of the diagonal. If \f$ \beta > 0 \f$ then, the factorization is directly performed + * on the matrix B. Otherwise, the factorization is performed on the shifted matrix \f$ B + (\sigma+|\beta| I \f$ where + * \f$ \sigma \f$ is the initial shift value as returned and set by setInitialShift() method. The default value is \f$ \sigma = 10^{-3} \f$. + * If the factorization fails, then the shift in doubled until it succeed or a maximum of ten attempts. If it still fails, as returned by + * the info() method, then you can either increase the initial shift, or better use another preconditioning technique. + * + */ +template <typename Scalar, int _UpLo = Lower, typename _OrderingType = +#ifndef EIGEN_MPL2_ONLY +AMDOrdering<int> +#else +NaturalOrdering<int> +#endif +> +class IncompleteCholesky : public SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > +{ + protected: + typedef SparseSolverBase<IncompleteCholesky<Scalar,_UpLo,_OrderingType> > Base; + using Base::m_isInitialized; + public: + typedef typename NumTraits<Scalar>::Real RealScalar; + typedef _OrderingType OrderingType; + typedef typename OrderingType::PermutationType PermutationType; + typedef typename PermutationType::StorageIndex StorageIndex; + typedef SparseMatrix<Scalar,ColMajor,StorageIndex> FactorType; + typedef Matrix<Scalar,Dynamic,1> VectorSx; + typedef Matrix<RealScalar,Dynamic,1> VectorRx; + typedef Matrix<StorageIndex,Dynamic, 1> VectorIx; + typedef std::vector<std::list<StorageIndex> > VectorList; + enum { UpLo = _UpLo }; + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; + public: + + /** Default constructor leaving the object in a partly non-initialized stage. + * + * You must call compute() or the pair analyzePattern()/factorize() to make it valid. + * + * \sa IncompleteCholesky(const MatrixType&) + */ + IncompleteCholesky() : m_initialShift(1e-3),m_factorizationIsOk(false) {} + + /** Constructor computing the incomplete factorization for the given matrix \a matrix. + */ + template<typename MatrixType> + IncompleteCholesky(const MatrixType& matrix) : m_initialShift(1e-3),m_factorizationIsOk(false) + { + compute(matrix); + } + + /** \returns number of rows of the factored matrix */ + Index rows() const { return m_L.rows(); } + + /** \returns number of columns of the factored matrix */ + Index cols() const { return m_L.cols(); } + + + /** \brief Reports whether previous computation was successful. + * + * It triggers an assertion if \c *this has not been initialized through the respective constructor, + * or a call to compute() or analyzePattern(). + * + * \returns \c Success if computation was successful, + * \c NumericalIssue if the matrix appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "IncompleteCholesky is not initialized."); + return m_info; + } + + /** \brief Set the initial shift parameter \f$ \sigma \f$. + */ + void setInitialShift(RealScalar shift) { m_initialShift = shift; } + + /** \brief Computes the fill reducing permutation vector using the sparsity pattern of \a mat + */ + template<typename MatrixType> + void analyzePattern(const MatrixType& mat) + { + OrderingType ord; + PermutationType pinv; + ord(mat.template selfadjointView<UpLo>(), pinv); + if(pinv.size()>0) m_perm = pinv.inverse(); + else m_perm.resize(0); + m_L.resize(mat.rows(), mat.cols()); + m_analysisIsOk = true; + m_isInitialized = true; + m_info = Success; + } + + /** \brief Performs the numerical factorization of the input matrix \a mat + * + * The method analyzePattern() or compute() must have been called beforehand + * with a matrix having the same pattern. + * + * \sa compute(), analyzePattern() + */ + template<typename MatrixType> + void factorize(const MatrixType& mat); + + /** Computes or re-computes the incomplete Cholesky factorization of the input matrix \a mat + * + * It is a shortcut for a sequential call to the analyzePattern() and factorize() methods. + * + * \sa analyzePattern(), factorize() + */ + template<typename MatrixType> + void compute(const MatrixType& mat) + { + analyzePattern(mat); + factorize(mat); + } + + // internal + template<typename Rhs, typename Dest> + void _solve_impl(const Rhs& b, Dest& x) const + { + eigen_assert(m_factorizationIsOk && "factorize() should be called first"); + if (m_perm.rows() == b.rows()) x = m_perm * b; + else x = b; + x = m_scale.asDiagonal() * x; + x = m_L.template triangularView<Lower>().solve(x); + x = m_L.adjoint().template triangularView<Upper>().solve(x); + x = m_scale.asDiagonal() * x; + if (m_perm.rows() == b.rows()) + x = m_perm.inverse() * x; + } + + /** \returns the sparse lower triangular factor L */ + const FactorType& matrixL() const { eigen_assert("m_factorizationIsOk"); return m_L; } + + /** \returns a vector representing the scaling factor S */ + const VectorRx& scalingS() const { eigen_assert("m_factorizationIsOk"); return m_scale; } + + /** \returns the fill-in reducing permutation P (can be empty for a natural ordering) */ + const PermutationType& permutationP() const { eigen_assert("m_analysisIsOk"); return m_perm; } + + protected: + FactorType m_L; // The lower part stored in CSC + VectorRx m_scale; // The vector for scaling the matrix + RealScalar m_initialShift; // The initial shift parameter + bool m_analysisIsOk; + bool m_factorizationIsOk; + ComputationInfo m_info; + PermutationType m_perm; + + private: + inline void updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol); +}; + +// Based on the following paper: +// C-J. Lin and J. J. Moré, Incomplete Cholesky Factorizations with +// Limited memory, SIAM J. Sci. Comput. 21(1), pp. 24-45, 1999 +// http://ftp.mcs.anl.gov/pub/tech_reports/reports/P682.pdf +template<typename Scalar, int _UpLo, typename OrderingType> +template<typename _MatrixType> +void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType& mat) +{ + using std::sqrt; + eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); + + // Dropping strategy : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added + + // Apply the fill-reducing permutation computed in analyzePattern() + if (m_perm.rows() == mat.rows() ) // To detect the null permutation + { + // The temporary is needed to make sure that the diagonal entry is properly sorted + FactorType tmp(mat.rows(), mat.cols()); + tmp = mat.template selfadjointView<_UpLo>().twistedBy(m_perm); + m_L.template selfadjointView<Lower>() = tmp.template selfadjointView<Lower>(); + } + else + { + m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>(); + } + + Index n = m_L.cols(); + Index nnz = m_L.nonZeros(); + Map<VectorSx> vals(m_L.valuePtr(), nnz); //values + Map<VectorIx> rowIdx(m_L.innerIndexPtr(), nnz); //Row indices + Map<VectorIx> colPtr( m_L.outerIndexPtr(), n+1); // Pointer to the beginning of each row + VectorIx firstElt(n-1); // for each j, points to the next entry in vals that will be used in the factorization + VectorList listCol(n); // listCol(j) is a linked list of columns to update column j + VectorSx col_vals(n); // Store a nonzero values in each column + VectorIx col_irow(n); // Row indices of nonzero elements in each column + VectorIx col_pattern(n); + col_pattern.fill(-1); + StorageIndex col_nnz; + + + // Computes the scaling factors + m_scale.resize(n); + m_scale.setZero(); + for (Index j = 0; j < n; j++) + for (Index k = colPtr[j]; k < colPtr[j+1]; k++) + { + m_scale(j) += numext::abs2(vals(k)); + if(rowIdx[k]!=j) + m_scale(rowIdx[k]) += numext::abs2(vals(k)); + } + + m_scale = m_scale.cwiseSqrt().cwiseSqrt(); + + for (Index j = 0; j < n; ++j) + if(m_scale(j)>(std::numeric_limits<RealScalar>::min)()) + m_scale(j) = RealScalar(1)/m_scale(j); + else + m_scale(j) = 1; + + // TODO disable scaling if not needed, i.e., if it is roughly uniform? (this will make solve() faster) + + // Scale and compute the shift for the matrix + RealScalar mindiag = NumTraits<RealScalar>::highest(); + for (Index j = 0; j < n; j++) + { + for (Index k = colPtr[j]; k < colPtr[j+1]; k++) + vals[k] *= (m_scale(j)*m_scale(rowIdx[k])); + eigen_internal_assert(rowIdx[colPtr[j]]==j && "IncompleteCholesky: only the lower triangular part must be stored"); + mindiag = numext::mini(numext::real(vals[colPtr[j]]), mindiag); + } + + FactorType L_save = m_L; + + RealScalar shift = 0; + if(mindiag <= RealScalar(0.)) + shift = m_initialShift - mindiag; + + m_info = NumericalIssue; + + // Try to perform the incomplete factorization using the current shift + int iter = 0; + do + { + // Apply the shift to the diagonal elements of the matrix + for (Index j = 0; j < n; j++) + vals[colPtr[j]] += shift; + + // jki version of the Cholesky factorization + Index j=0; + for (; j < n; ++j) + { + // Left-looking factorization of the j-th column + // First, load the j-th column into col_vals + Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored + col_nnz = 0; + for (Index i = colPtr[j] + 1; i < colPtr[j+1]; i++) + { + StorageIndex l = rowIdx[i]; + col_vals(col_nnz) = vals[i]; + col_irow(col_nnz) = l; + col_pattern(l) = col_nnz; + col_nnz++; + } + { + typename std::list<StorageIndex>::iterator k; + // Browse all previous columns that will update column j + for(k = listCol[j].begin(); k != listCol[j].end(); k++) + { + Index jk = firstElt(*k); // First element to use in the column + eigen_internal_assert(rowIdx[jk]==j); + Scalar v_j_jk = numext::conj(vals[jk]); + + jk += 1; + for (Index i = jk; i < colPtr[*k+1]; i++) + { + StorageIndex l = rowIdx[i]; + if(col_pattern[l]<0) + { + col_vals(col_nnz) = vals[i] * v_j_jk; + col_irow[col_nnz] = l; + col_pattern(l) = col_nnz; + col_nnz++; + } + else + col_vals(col_pattern[l]) -= vals[i] * v_j_jk; + } + updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol); + } + } + + // Scale the current column + if(numext::real(diag) <= 0) + { + if(++iter>=10) + return; + + // increase shift + shift = numext::maxi(m_initialShift,RealScalar(2)*shift); + // restore m_L, col_pattern, and listCol + vals = Map<const VectorSx>(L_save.valuePtr(), nnz); + rowIdx = Map<const VectorIx>(L_save.innerIndexPtr(), nnz); + colPtr = Map<const VectorIx>(L_save.outerIndexPtr(), n+1); + col_pattern.fill(-1); + for(Index i=0; i<n; ++i) + listCol[i].clear(); + + break; + } + + RealScalar rdiag = sqrt(numext::real(diag)); + vals[colPtr[j]] = rdiag; + for (Index k = 0; k<col_nnz; ++k) + { + Index i = col_irow[k]; + //Scale + col_vals(k) /= rdiag; + //Update the remaining diagonals with col_vals + vals[colPtr[i]] -= numext::abs2(col_vals(k)); + } + // Select the largest p elements + // p is the original number of elements in the column (without the diagonal) + Index p = colPtr[j+1] - colPtr[j] - 1 ; + Ref<VectorSx> cvals = col_vals.head(col_nnz); + Ref<VectorIx> cirow = col_irow.head(col_nnz); + internal::QuickSplit(cvals,cirow, p); + // Insert the largest p elements in the matrix + Index cpt = 0; + for (Index i = colPtr[j]+1; i < colPtr[j+1]; i++) + { + vals[i] = col_vals(cpt); + rowIdx[i] = col_irow(cpt); + // restore col_pattern: + col_pattern(col_irow(cpt)) = -1; + cpt++; + } + // Get the first smallest row index and put it after the diagonal element + Index jk = colPtr(j)+1; + updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol); + } + + if(j==n) + { + m_factorizationIsOk = true; + m_info = Success; + } + } while(m_info!=Success); +} + +template<typename Scalar, int _UpLo, typename OrderingType> +inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(Ref<const VectorIx> colPtr, Ref<VectorIx> rowIdx, Ref<VectorSx> vals, const Index& col, const Index& jk, VectorIx& firstElt, VectorList& listCol) +{ + if (jk < colPtr(col+1) ) + { + Index p = colPtr(col+1) - jk; + Index minpos; + rowIdx.segment(jk,p).minCoeff(&minpos); + minpos += jk; + if (rowIdx(minpos) != rowIdx(jk)) + { + //Swap + std::swap(rowIdx(jk),rowIdx(minpos)); + std::swap(vals(jk),vals(minpos)); + } + firstElt(col) = internal::convert_index<StorageIndex,Index>(jk); + listCol[rowIdx(jk)].push_back(internal::convert_index<StorageIndex,Index>(col)); + } +} + +} // end namespace Eigen + +#endif |