diff options
Diffstat (limited to 'eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h')
-rw-r--r-- | eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h | 138 |
1 files changed, 61 insertions, 77 deletions
diff --git a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h index d3f37fe..338e6f1 100644 --- a/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +++ b/eigen/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h @@ -2,6 +2,7 @@ // for linear algebra. // // Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -24,7 +25,7 @@ namespace internal { * \param ind The array of index for the elements in @p row * \param ncut The number of largest elements to keep **/ -template <typename VectorV, typename VectorI, typename Index> +template <typename VectorV, typename VectorI> Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) { typedef typename VectorV::RealScalar RealScalar; @@ -66,6 +67,8 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) * \class IncompleteLUT * \brief Incomplete LU factorization with dual-threshold strategy * + * \implsparsesolverconcept + * * During the numerical factorization, two dropping rules are used : * 1) any element whose magnitude is less than some tolerance is dropped. * This tolerance is obtained by multiplying the input tolerance @p droptol @@ -92,28 +95,36 @@ Index QuickSplit(VectorV &row, VectorI &ind, Index ncut) * alternatively, on GMANE: * http://comments.gmane.org/gmane.comp.lib.eigen/3302 */ -template <typename _Scalar> -class IncompleteLUT : internal::noncopyable +template <typename _Scalar, typename _StorageIndex = int> +class IncompleteLUT : public SparseSolverBase<IncompleteLUT<_Scalar, _StorageIndex> > { + protected: + typedef SparseSolverBase<IncompleteLUT> Base; + using Base::m_isInitialized; + public: typedef _Scalar Scalar; + typedef _StorageIndex StorageIndex; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar,Dynamic,1> Vector; - typedef SparseMatrix<Scalar,RowMajor> FactorType; - typedef SparseMatrix<Scalar,ColMajor> PermutType; - typedef typename FactorType::Index Index; + typedef Matrix<StorageIndex,Dynamic,1> VectorI; + typedef SparseMatrix<Scalar,RowMajor,StorageIndex> FactorType; + + enum { + ColsAtCompileTime = Dynamic, + MaxColsAtCompileTime = Dynamic + }; public: - typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType; IncompleteLUT() : m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10), - m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false) + m_analysisIsOk(false), m_factorizationIsOk(false) {} template<typename MatrixType> - IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10) + explicit IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10) : m_droptol(droptol),m_fillfactor(fillfactor), - m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false) + m_analysisIsOk(false),m_factorizationIsOk(false) { eigen_assert(fillfactor != 0); compute(mat); @@ -146,7 +157,7 @@ class IncompleteLUT : internal::noncopyable * **/ template<typename MatrixType> - IncompleteLUT<Scalar>& compute(const MatrixType& amat) + IncompleteLUT& compute(const MatrixType& amat) { analyzePattern(amat); factorize(amat); @@ -157,7 +168,7 @@ class IncompleteLUT : internal::noncopyable void setFillfactor(int fillfactor); template<typename Rhs, typename Dest> - void _solve(const Rhs& b, Dest& x) const + void _solve_impl(const Rhs& b, Dest& x) const { x = m_Pinv * b; x = m_lu.template triangularView<UnitLower>().solve(x); @@ -165,15 +176,6 @@ class IncompleteLUT : internal::noncopyable x = m_P * x; } - template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs> - solve(const MatrixBase<Rhs>& b) const - { - eigen_assert(m_isInitialized && "IncompleteLUT is not initialized."); - eigen_assert(cols()==b.rows() - && "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b"); - return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived()); - } - protected: /** keeps off-diagonal entries; drops diagonal entries */ @@ -191,18 +193,17 @@ protected: int m_fillfactor; bool m_analysisIsOk; bool m_factorizationIsOk; - bool m_isInitialized; ComputationInfo m_info; - PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation - PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation + PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_P; // Fill-reducing permutation + PermutationMatrix<Dynamic,Dynamic,StorageIndex> m_Pinv; // Inverse permutation }; /** * Set control parameter droptol * \param droptol Drop any element whose magnitude is less than this tolerance **/ -template<typename Scalar> -void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol) +template<typename Scalar, typename StorageIndex> +void IncompleteLUT<Scalar,StorageIndex>::setDroptol(const RealScalar& droptol) { this->m_droptol = droptol; } @@ -211,61 +212,62 @@ void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol) * Set control parameter fillfactor * \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row. **/ -template<typename Scalar> -void IncompleteLUT<Scalar>::setFillfactor(int fillfactor) +template<typename Scalar, typename StorageIndex> +void IncompleteLUT<Scalar,StorageIndex>::setFillfactor(int fillfactor) { this->m_fillfactor = fillfactor; } -template <typename Scalar> +template <typename Scalar, typename StorageIndex> template<typename _MatrixType> -void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat) +void IncompleteLUT<Scalar,StorageIndex>::analyzePattern(const _MatrixType& amat) { // Compute the Fill-reducing permutation // Since ILUT does not perform any numerical pivoting, // it is highly preferable to keep the diagonal through symmetric permutations. #ifndef EIGEN_MPL2_ONLY // To this end, let's symmetrize the pattern and perform AMD on it. - SparseMatrix<Scalar,ColMajor, Index> mat1 = amat; - SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose(); + SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat; + SparseMatrix<Scalar,ColMajor, StorageIndex> mat2 = amat.transpose(); // FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice. // on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered... - SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1; - AMDOrdering<Index> ordering; + SparseMatrix<Scalar,ColMajor, StorageIndex> AtA = mat2 + mat1; + AMDOrdering<StorageIndex> ordering; ordering(AtA,m_P); m_Pinv = m_P.inverse(); // cache the inverse permutation #else // If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine. - SparseMatrix<Scalar,ColMajor, Index> mat1 = amat; - COLAMDOrdering<Index> ordering; + SparseMatrix<Scalar,ColMajor, StorageIndex> mat1 = amat; + COLAMDOrdering<StorageIndex> ordering; ordering(mat1,m_Pinv); m_P = m_Pinv.inverse(); #endif m_analysisIsOk = true; m_factorizationIsOk = false; - m_isInitialized = false; + m_isInitialized = true; } -template <typename Scalar> +template <typename Scalar, typename StorageIndex> template<typename _MatrixType> -void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) +void IncompleteLUT<Scalar,StorageIndex>::factorize(const _MatrixType& amat) { using std::sqrt; using std::swap; using std::abs; + using internal::convert_index; eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix"); Index n = amat.cols(); // Size of the matrix m_lu.resize(n,n); // Declare Working vectors and variables Vector u(n) ; // real values of the row -- maximum size is n -- - VectorXi ju(n); // column position of the values in u -- maximum size is n - VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 + VectorI ju(n); // column position of the values in u -- maximum size is n + VectorI jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1 // Apply the fill-reducing permutation eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); - SparseMatrix<Scalar,RowMajor, Index> mat; + SparseMatrix<Scalar,RowMajor, StorageIndex> mat; mat = amat.twistedBy(m_Pinv); // Initialization @@ -274,7 +276,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) u.fill(0); // number of largest elements to keep in each row: - Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1; + Index fill_in = (amat.nonZeros()*m_fillfactor)/n + 1; if (fill_in > n) fill_in = n; // number of largest nonzero elements to keep in the L and the U part of the current row: @@ -289,9 +291,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) Index sizeu = 1; // number of nonzero elements in the upper part of the current row Index sizel = 0; // number of nonzero elements in the lower part of the current row - ju(ii) = ii; + ju(ii) = convert_index<StorageIndex>(ii); u(ii) = 0; - jr(ii) = ii; + jr(ii) = convert_index<StorageIndex>(ii); RealScalar rownorm = 0; typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii @@ -301,9 +303,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) if (k < ii) { // copy the lower part - ju(sizel) = k; + ju(sizel) = convert_index<StorageIndex>(k); u(sizel) = j_it.value(); - jr(k) = sizel; + jr(k) = convert_index<StorageIndex>(sizel); ++sizel; } else if (k == ii) @@ -314,9 +316,9 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) { // copy the upper part Index jpos = ii + sizeu; - ju(jpos) = k; + ju(jpos) = convert_index<StorageIndex>(k); u(jpos) = j_it.value(); - jr(k) = jpos; + jr(k) = convert_index<StorageIndex>(jpos); ++sizeu; } rownorm += numext::abs2(j_it.value()); @@ -346,7 +348,8 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) // swap the two locations Index j = ju(jj); swap(ju(jj), ju(k)); - jr(minrow) = jj; jr(j) = k; + jr(minrow) = convert_index<StorageIndex>(jj); + jr(j) = convert_index<StorageIndex>(k); swap(u(jj), u(k)); } // Reset this location @@ -370,8 +373,8 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) for (; ki_it; ++ki_it) { Scalar prod = fact * ki_it.value(); - Index j = ki_it.index(); - Index jpos = jr(j); + Index j = ki_it.index(); + Index jpos = jr(j); if (jpos == -1) // fill-in element { Index newpos; @@ -387,16 +390,16 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) sizel++; eigen_internal_assert(sizel<=ii); } - ju(newpos) = j; + ju(newpos) = convert_index<StorageIndex>(j); u(newpos) = -prod; - jr(j) = newpos; + jr(j) = convert_index<StorageIndex>(newpos); } else u(jpos) -= prod; } // store the pivot element - u(len) = fact; - ju(len) = minrow; + u(len) = fact; + ju(len) = convert_index<StorageIndex>(minrow); ++len; jj++; @@ -411,7 +414,7 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) sizel = len; len = (std::min)(sizel, nnzL); typename Vector::SegmentReturnType ul(u.segment(0, sizel)); - typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel)); + typename VectorI::SegmentReturnType jul(ju.segment(0, sizel)); internal::QuickSplit(ul, jul, len); // store the largest m_fill elements of the L part @@ -440,39 +443,20 @@ void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat) sizeu = len + 1; // +1 to take into account the diagonal element len = (std::min)(sizeu, nnzU); typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1)); - typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); + typename VectorI::SegmentReturnType juu(ju.segment(ii+1, sizeu-1)); internal::QuickSplit(uu, juu, len); // store the largest elements of the U part for(Index k = ii + 1; k < ii + len; k++) m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k); } - m_lu.finalize(); m_lu.makeCompressed(); m_factorizationIsOk = true; - m_isInitialized = m_factorizationIsOk; m_info = Success; } -namespace internal { - -template<typename _MatrixType, typename Rhs> -struct solve_retval<IncompleteLUT<_MatrixType>, Rhs> - : solve_retval_base<IncompleteLUT<_MatrixType>, Rhs> -{ - typedef IncompleteLUT<_MatrixType> Dec; - EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) - - template<typename Dest> void evalTo(Dest& dst) const - { - dec()._solve(rhs(),dst); - } -}; - -} // end namespace internal - } // end namespace Eigen #endif // EIGEN_INCOMPLETE_LUT_H |