diff options
Diffstat (limited to 'eigen/Eigen/src/SVD/JacobiSVD.h')
-rw-r--r-- | eigen/Eigen/src/SVD/JacobiSVD.h | 332 |
1 files changed, 68 insertions, 264 deletions
diff --git a/eigen/Eigen/src/SVD/JacobiSVD.h b/eigen/Eigen/src/SVD/JacobiSVD.h index 7a5821d..43488b1 100644 --- a/eigen/Eigen/src/SVD/JacobiSVD.h +++ b/eigen/Eigen/src/SVD/JacobiSVD.h @@ -2,6 +2,7 @@ // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> +// Copyright (C) 2013-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -51,7 +52,6 @@ template<typename MatrixType, int QRPreconditioner, int Case> class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> { public: - typedef typename MatrixType::Index Index; void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) { @@ -65,7 +65,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: - typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { @@ -106,7 +105,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: - typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { @@ -114,9 +112,11 @@ public: ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options + TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) + : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) + : MatrixType::Options }; - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> + typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime> TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) @@ -156,8 +156,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: - typedef typename MatrixType::Index Index; - void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) @@ -197,7 +195,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: - typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { @@ -205,10 +202,12 @@ public: ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options + TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) + : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) + : MatrixType::Options }; - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> + typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, TrOptions, MaxColsAtCompileTime, MaxRowsAtCompileTime> TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) @@ -256,8 +255,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> { public: - typedef typename MatrixType::Index Index; - void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) @@ -296,7 +293,6 @@ template<typename MatrixType> class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> { public: - typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; enum { @@ -358,7 +354,6 @@ template<typename MatrixType, int QRPreconditioner> struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> { typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename SVD::Index Index; typedef typename MatrixType::RealScalar RealScalar; static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } }; @@ -367,14 +362,12 @@ template<typename MatrixType, int QRPreconditioner> struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> { typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename SVD::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) { using std::sqrt; using std::abs; - using std::max; Scalar z; JacobiRotation<Scalar> rot; RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); @@ -423,44 +416,18 @@ struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> } // update largest diagonal entry - maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); + maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); // and check whether the 2x2 block is already diagonal - RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry); + RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; } }; -template<typename MatrixType, typename RealScalar, typename Index> -void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, - JacobiRotation<RealScalar> *j_left, - JacobiRotation<RealScalar> *j_right) +template<typename _MatrixType, int QRPreconditioner> +struct traits<JacobiSVD<_MatrixType,QRPreconditioner> > { - using std::sqrt; - using std::abs; - Matrix<RealScalar,2,2> m; - m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), - numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); - JacobiRotation<RealScalar> rot1; - RealScalar t = m.coeff(0,0) + m.coeff(1,1); - RealScalar d = m.coeff(1,0) - m.coeff(0,1); - if(d == RealScalar(0)) - { - rot1.s() = RealScalar(0); - rot1.c() = RealScalar(1); - } - else - { - // If d!=0, then t/d cannot overflow because the magnitude of the - // entries forming d are not too small compared to the ones forming t. - RealScalar u = t / d; - RealScalar tmp = sqrt(RealScalar(1) + numext::abs2(u)); - rot1.s() = RealScalar(1) / tmp; - rot1.c() = u / tmp; - } - m.applyOnTheLeft(0,1,rot1); - j_right->makeJacobi(m,0,1); - *j_left = rot1 * j_right->transpose(); -} + typedef _MatrixType MatrixType; +}; } // end namespace internal @@ -471,8 +438,8 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, * * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally + * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition + * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally * for the R-SVD step for non-square matrices. See discussion of possible values below. * * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product @@ -518,13 +485,14 @@ void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, * \sa MatrixBase::jacobiSvd() */ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD + : public SVDBase<JacobiSVD<_MatrixType,QRPreconditioner> > { + typedef SVDBase<JacobiSVD> Base; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, @@ -535,13 +503,10 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD MatrixOptions = MatrixType::Options }; - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, - MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> - MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, - MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> - MatrixVType; - typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; + typedef typename Base::MatrixUType MatrixUType; + typedef typename Base::MatrixVType MatrixVType; + typedef typename Base::SingularValuesType SingularValuesType; + typedef typename internal::plain_row_type<MatrixType>::type RowType; typedef typename internal::plain_col_type<MatrixType>::type ColType; typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, @@ -554,11 +519,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD * perform decompositions via JacobiSVD::compute(const MatrixType&). */ JacobiSVD() - : m_isInitialized(false), - m_isAllocated(false), - m_usePrescribedThreshold(false), - m_computationOptions(0), - m_rows(-1), m_cols(-1), m_diagSize(0) {} @@ -569,11 +529,6 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD * \sa JacobiSVD() */ JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) - : m_isInitialized(false), - m_isAllocated(false), - m_usePrescribedThreshold(false), - m_computationOptions(0), - m_rows(-1), m_cols(-1) { allocate(rows, cols, computationOptions); } @@ -588,12 +543,7 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ - JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - : m_isInitialized(false), - m_isAllocated(false), - m_usePrescribedThreshold(false), - m_computationOptions(0), - m_rows(-1), m_cols(-1) + explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) { compute(matrix, computationOptions); } @@ -621,164 +571,33 @@ template<typename _MatrixType, int QRPreconditioner> class JacobiSVD return compute(matrix, m_computationOptions); } - /** \returns the \a U matrix. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. - * - * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a U to be computed. - */ - const MatrixUType& matrixU() const - { - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - eigen_assert(computeU() && "This JacobiSVD decomposition didn't compute U. Did you ask for it?"); - return m_matrixU; - } - - /** \returns the \a V matrix. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. - * - * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a V to be computed. - */ - const MatrixVType& matrixV() const - { - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - eigen_assert(computeV() && "This JacobiSVD decomposition didn't compute V. Did you ask for it?"); - return m_matrixV; - } - - /** \returns the vector of singular values. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the - * returned vector has size \a m. Singular values are always sorted in decreasing order. - */ - const SingularValuesType& singularValues() const - { - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - return m_singularValues; - } - - /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ - inline bool computeU() const { return m_computeFullU || m_computeThinU; } - /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ - inline bool computeV() const { return m_computeFullV || m_computeThinV; } - - /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * - * \param b the right-hand-side of the equation to solve. - * - * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. - * - * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. - * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. - */ - template<typename Rhs> - inline const internal::solve_retval<JacobiSVD, Rhs> - solve(const MatrixBase<Rhs>& b) const - { - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - eigen_assert(computeU() && computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); - return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived()); - } - - /** \returns the number of singular values that are not exactly 0 */ - Index nonzeroSingularValues() const - { - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - return m_nonzeroSingularValues; - } - - /** \returns the rank of the matrix of which \c *this is the SVD. - * - * \note This method has to determine which singular values should be considered nonzero. - * For that, it uses the threshold value that you can control by calling - * setThreshold(const RealScalar&). - */ - inline Index rank() const - { - using std::abs; - eigen_assert(m_isInitialized && "JacobiSVD is not initialized."); - if(m_singularValues.size()==0) return 0; - RealScalar premultiplied_threshold = m_singularValues.coeff(0) * threshold(); - Index i = m_nonzeroSingularValues-1; - while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i; - return i+1; - } - - /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(), - * which need to determine when singular values are to be considered nonzero. - * This is not used for the SVD decomposition itself. - * - * When it needs to get the threshold value, Eigen calls threshold(). - * The default is \c NumTraits<Scalar>::epsilon() - * - * \param threshold The new value to use as the threshold. - * - * A singular value will be considered nonzero if its value is strictly greater than - * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$. - * - * If you want to come back to the default behavior, call setThreshold(Default_t) - */ - JacobiSVD& setThreshold(const RealScalar& threshold) - { - m_usePrescribedThreshold = true; - m_prescribedThreshold = threshold; - return *this; - } - - /** Allows to come back to the default behavior, letting Eigen use its default formula for - * determining the threshold. - * - * You should pass the special object Eigen::Default as parameter here. - * \code svd.setThreshold(Eigen::Default); \endcode - * - * See the documentation of setThreshold(const RealScalar&). - */ - JacobiSVD& setThreshold(Default_t) - { - m_usePrescribedThreshold = false; - return *this; - } - - /** Returns the threshold that will be used by certain methods such as rank(). - * - * See the documentation of setThreshold(const RealScalar&). - */ - RealScalar threshold() const - { - eigen_assert(m_isInitialized || m_usePrescribedThreshold); - return m_usePrescribedThreshold ? m_prescribedThreshold - : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon(); - } - - inline Index rows() const { return m_rows; } - inline Index cols() const { return m_cols; } + using Base::computeU; + using Base::computeV; + using Base::rows; + using Base::cols; + using Base::rank; private: void allocate(Index rows, Index cols, unsigned int computationOptions); - - static void check_template_parameters() - { - EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); - } protected: - MatrixUType m_matrixU; - MatrixVType m_matrixV; - SingularValuesType m_singularValues; + using Base::m_matrixU; + using Base::m_matrixV; + using Base::m_singularValues; + using Base::m_isInitialized; + using Base::m_isAllocated; + using Base::m_usePrescribedThreshold; + using Base::m_computeFullU; + using Base::m_computeThinU; + using Base::m_computeFullV; + using Base::m_computeThinV; + using Base::m_computationOptions; + using Base::m_nonzeroSingularValues; + using Base::m_rows; + using Base::m_cols; + using Base::m_diagSize; + using Base::m_prescribedThreshold; WorkMatrixType m_workMatrix; - bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold; - bool m_computeFullU, m_computeThinU; - bool m_computeFullV, m_computeThinV; - unsigned int m_computationOptions; - Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; - RealScalar m_prescribedThreshold; template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> friend struct internal::svd_precondition_2x2_block_to_be_real; @@ -843,18 +662,15 @@ template<typename MatrixType, int QRPreconditioner> JacobiSVD<MatrixType, QRPreconditioner>& JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) { - check_template_parameters(); - using std::abs; - using std::max; allocate(matrix.rows(), matrix.cols(), computationOptions); // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, // only worsening the precision of U and V as we accumulate more rotations const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); - // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) - const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min(); + // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) + const RealScalar considerAsZero = (std::numeric_limits<RealScalar>::min)(); // Scaling factor to reduce over/under-flows RealScalar scale = matrix.cwiseAbs().maxCoeff(); @@ -894,12 +710,12 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig // if this 2x2 sub-matrix is not diagonal already... // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't // keep us iterating forever. Similarly, small denormal numbers are considered zero. - RealScalar threshold = max EIGEN_EMPTY (considerAsZero, precision * maxDiagEntry); + RealScalar threshold = numext::maxi<RealScalar>(considerAsZero, precision * maxDiagEntry); if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) { finished = false; // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal - // the complex to real operation returns true is the updated 2x2 block is not already diagonal + // the complex to real operation returns true if the updated 2x2 block is not already diagonal if(internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q, maxDiagEntry)) { JacobiRotation<RealScalar> j_left, j_right; @@ -913,7 +729,7 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); // keep track of the largest diagonal coefficient - maxDiagEntry = max EIGEN_EMPTY (maxDiagEntry,max EIGEN_EMPTY (abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); + maxDiagEntry = numext::maxi<RealScalar>(maxDiagEntry,numext::maxi<RealScalar>(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); } } } @@ -924,10 +740,25 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig for(Index i = 0; i < m_diagSize; ++i) { - RealScalar a = abs(m_workMatrix.coeff(i,i)); - m_singularValues.coeffRef(i) = a; - if(computeU() && (a!=RealScalar(0))) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; + // For a complex matrix, some diagonal coefficients might note have been + // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part + // of some diagonal entry might not be null. + if(NumTraits<Scalar>::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) + { + RealScalar a = abs(m_workMatrix.coeff(i,i)); + m_singularValues.coeffRef(i) = abs(a); + if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; + } + else + { + // m_workMatrix.coeff(i,i) is already real, no difficulty: + RealScalar a = numext::real(m_workMatrix.coeff(i,i)); + m_singularValues.coeffRef(i) = abs(a); + if(computeU() && (a<RealScalar(0))) m_matrixU.col(i) = -m_matrixU.col(i); + } } + + m_singularValues *= scale; /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ @@ -949,38 +780,11 @@ JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsig if(computeV()) m_matrixV.col(pos).swap(m_matrixV.col(i)); } } - - m_singularValues *= scale; m_isInitialized = true; return *this; } -namespace internal { -template<typename _MatrixType, int QRPreconditioner, typename Rhs> -struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> - : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> -{ - typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; - EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) - - template<typename Dest> void evalTo(Dest& dst) const - { - eigen_assert(rhs().rows() == dec().rows()); - - // A = U S V^* - // So A^{-1} = V S^{-1} U^* - - Matrix<Scalar, Dynamic, Rhs::ColsAtCompileTime, 0, _MatrixType::MaxRowsAtCompileTime, Rhs::MaxColsAtCompileTime> tmp; - Index rank = dec().rank(); - - tmp.noalias() = dec().matrixU().leftCols(rank).adjoint() * rhs(); - tmp = dec().singularValues().head(rank).asDiagonal().inverse() * tmp; - dst = dec().matrixV().leftCols(rank) * tmp; - } -}; -} // end namespace internal - /** \svd_module * * \return the singular value decomposition of \c *this computed by two-sided |