diff options
Diffstat (limited to 'eigen/doc/AsciiQuickReference.txt')
-rw-r--r-- | eigen/doc/AsciiQuickReference.txt | 116 |
1 files changed, 62 insertions, 54 deletions
diff --git a/eigen/doc/AsciiQuickReference.txt b/eigen/doc/AsciiQuickReference.txt index b9f497f..8409f88 100644 --- a/eigen/doc/AsciiQuickReference.txt +++ b/eigen/doc/AsciiQuickReference.txt @@ -32,17 +32,19 @@ A << 1, 2, 3, // Initialize A. The elements can also be B << A, A, A; // B is three horizontally stacked A's. A.fill(10); // Fill A with all 10's. -// Eigen // Matlab -MatrixXd::Identity(rows,cols) // eye(rows,cols) -C.setIdentity(rows,cols) // C = eye(rows,cols) -MatrixXd::Zero(rows,cols) // zeros(rows,cols) -C.setZero(rows,cols) // C = ones(rows,cols) -MatrixXd::Ones(rows,cols) // ones(rows,cols) -C.setOnes(rows,cols) // C = ones(rows,cols) -MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1). -C.setRandom(rows,cols) // C = rand(rows,cols)*2-1 -VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)' -v.setLinSpaced(size,low,high) // v = linspace(low,high,size)' +// Eigen // Matlab +MatrixXd::Identity(rows,cols) // eye(rows,cols) +C.setIdentity(rows,cols) // C = eye(rows,cols) +MatrixXd::Zero(rows,cols) // zeros(rows,cols) +C.setZero(rows,cols) // C = zeros(rows,cols) +MatrixXd::Ones(rows,cols) // ones(rows,cols) +C.setOnes(rows,cols) // C = ones(rows,cols) +MatrixXd::Random(rows,cols) // rand(rows,cols)*2-1 // MatrixXd::Random returns uniform random numbers in (-1, 1). +C.setRandom(rows,cols) // C = rand(rows,cols)*2-1 +VectorXd::LinSpaced(size,low,high) // linspace(low,high,size)' +v.setLinSpaced(size,low,high) // v = linspace(low,high,size)' +VectorXi::LinSpaced(((hi-low)/step)+1, // low:step:hi + low,low+step*(size-1)) // // Matrix slicing and blocks. All expressions listed here are read/write. @@ -82,17 +84,20 @@ P.bottomRightCorner<rows,cols>() // P(end-rows+1:end, end-cols+1:end) // Of particular note is Eigen's swap function which is highly optimized. // Eigen // Matlab -R.row(i) = P.col(j); // R(i, :) = P(:, i) +R.row(i) = P.col(j); // R(i, :) = P(:, j) R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1]) -// Views, transpose, etc; all read-write except for .adjoint(). +// Views, transpose, etc; // Eigen // Matlab R.adjoint() // R' -R.transpose() // R.' or conj(R') -R.diagonal() // diag(R) +R.transpose() // R.' or conj(R') // Read-write +R.diagonal() // diag(R) // Read-write x.asDiagonal() // diag(x) -R.transpose().colwise().reverse(); // rot90(R) -R.conjugate() // conj(R) +R.transpose().colwise().reverse() // rot90(R) // Read-write +R.rowwise().reverse() // fliplr(R) +R.colwise().reverse() // flipud(R) +R.replicate(i,j) // repmat(P,i,j) + // All the same as Matlab, but matlab doesn't have *= style operators. // Matrix-vector. Matrix-matrix. Matrix-scalar. @@ -104,37 +109,40 @@ a *= M; R = P + Q; R = P/s; R -= Q; R /= s; // Vectorized operations on each element independently -// Eigen // Matlab -R = P.cwiseProduct(Q); // R = P .* Q -R = P.array() * s.array();// R = P .* s -R = P.cwiseQuotient(Q); // R = P ./ Q -R = P.array() / Q.array();// R = P ./ Q -R = P.array() + s.array();// R = P + s -R = P.array() - s.array();// R = P - s -R.array() += s; // R = R + s -R.array() -= s; // R = R - s -R.array() < Q.array(); // R < Q -R.array() <= Q.array(); // R <= Q -R.cwiseInverse(); // 1 ./ P -R.array().inverse(); // 1 ./ P -R.array().sin() // sin(P) -R.array().cos() // cos(P) -R.array().pow(s) // P .^ s -R.array().square() // P .^ 2 -R.array().cube() // P .^ 3 -R.cwiseSqrt() // sqrt(P) -R.array().sqrt() // sqrt(P) -R.array().exp() // exp(P) -R.array().log() // log(P) -R.cwiseMax(P) // max(R, P) -R.array().max(P.array()) // max(R, P) -R.cwiseMin(P) // min(R, P) -R.array().min(P.array()) // min(R, P) -R.cwiseAbs() // abs(P) -R.array().abs() // abs(P) -R.cwiseAbs2() // abs(P.^2) -R.array().abs2() // abs(P.^2) -(R.array() < s).select(P,Q); // (R < s ? P : Q) +// Eigen // Matlab +R = P.cwiseProduct(Q); // R = P .* Q +R = P.array() * s.array(); // R = P .* s +R = P.cwiseQuotient(Q); // R = P ./ Q +R = P.array() / Q.array(); // R = P ./ Q +R = P.array() + s.array(); // R = P + s +R = P.array() - s.array(); // R = P - s +R.array() += s; // R = R + s +R.array() -= s; // R = R - s +R.array() < Q.array(); // R < Q +R.array() <= Q.array(); // R <= Q +R.cwiseInverse(); // 1 ./ P +R.array().inverse(); // 1 ./ P +R.array().sin() // sin(P) +R.array().cos() // cos(P) +R.array().pow(s) // P .^ s +R.array().square() // P .^ 2 +R.array().cube() // P .^ 3 +R.cwiseSqrt() // sqrt(P) +R.array().sqrt() // sqrt(P) +R.array().exp() // exp(P) +R.array().log() // log(P) +R.cwiseMax(P) // max(R, P) +R.array().max(P.array()) // max(R, P) +R.cwiseMin(P) // min(R, P) +R.array().min(P.array()) // min(R, P) +R.cwiseAbs() // abs(P) +R.array().abs() // abs(P) +R.cwiseAbs2() // abs(P.^2) +R.array().abs2() // abs(P.^2) +(R.array() < s).select(P,Q ); // (R < s ? P : Q) +R = (Q.array()==0).select(P,A) // R(Q==0) = P(Q==0) +R = P.unaryExpr(ptr_fun(func)) // R = arrayfun(func, P) // with: scalar func(const scalar &x); + // Reductions. int r, c; @@ -165,12 +173,12 @@ x.dot(y) // dot(x, y) x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry> //// Type conversion -// Eigen // Matlab -A.cast<double>(); // double(A) -A.cast<float>(); // single(A) -A.cast<int>(); // int32(A) -A.real(); // real(A) -A.imag(); // imag(A) +// Eigen // Matlab +A.cast<double>(); // double(A) +A.cast<float>(); // single(A) +A.cast<int>(); // int32(A) +A.real(); // real(A) +A.imag(); // imag(A) // if the original type equals destination type, no work is done // Note that for most operations Eigen requires all operands to have the same type: |