diff options
Diffstat (limited to 'eigen/test/cholesky.cpp')
-rw-r--r-- | eigen/test/cholesky.cpp | 157 |
1 files changed, 131 insertions, 26 deletions
diff --git a/eigen/test/cholesky.cpp b/eigen/test/cholesky.cpp index 56885de..8ad5ac6 100644 --- a/eigen/test/cholesky.cpp +++ b/eigen/test/cholesky.cpp @@ -11,20 +11,17 @@ #define EIGEN_NO_ASSERTION_CHECKING #endif -static int nb_temporaries; - -#define EIGEN_DENSE_STORAGE_CTOR_PLUGIN { if(size!=0) nb_temporaries++; } +#define TEST_ENABLE_TEMPORARY_TRACKING #include "main.h" #include <Eigen/Cholesky> #include <Eigen/QR> -#define VERIFY_EVALUATION_COUNT(XPR,N) {\ - nb_temporaries = 0; \ - XPR; \ - if(nb_temporaries!=N) std::cerr << "nb_temporaries == " << nb_temporaries << "\n"; \ - VERIFY( (#XPR) && nb_temporaries==N ); \ - } +template<typename MatrixType, int UpLo> +typename MatrixType::RealScalar matrix_l1_norm(const MatrixType& m) { + MatrixType symm = m.template selfadjointView<UpLo>(); + return symm.cwiseAbs().colwise().sum().maxCoeff(); +} template<typename MatrixType,template <typename,int> class CholType> void test_chol_update(const MatrixType& symm) { @@ -83,14 +80,10 @@ template<typename MatrixType> void cholesky(const MatrixType& m) symm += a1 * a1.adjoint(); } - // to test if really Cholesky only uses the upper triangular part, uncomment the following - // FIXME: currently that fails !! - //symm.template part<StrictlyLower>().setZero(); - { SquareMatrixType symmUp = symm.template triangularView<Upper>(); SquareMatrixType symmLo = symm.template triangularView<Lower>(); - + LLT<SquareMatrixType,Lower> chollo(symmLo); VERIFY_IS_APPROX(symm, chollo.reconstructedMatrix()); vecX = chollo.solve(vecB); @@ -98,6 +91,14 @@ template<typename MatrixType> void cholesky(const MatrixType& m) matX = chollo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); + const MatrixType symmLo_inverse = chollo.solve(MatrixType::Identity(rows,cols)); + RealScalar rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / + matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); + RealScalar rcond_est = chollo.rcond(); + // Verify that the estimated condition number is within a factor of 10 of the + // truth. + VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); + // test the upper mode LLT<SquareMatrixType,Upper> cholup(symmUp); VERIFY_IS_APPROX(symm, cholup.reconstructedMatrix()); @@ -106,6 +107,15 @@ template<typename MatrixType> void cholesky(const MatrixType& m) matX = cholup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); + // Verify that the estimated condition number is within a factor of 10 of the + // truth. + const MatrixType symmUp_inverse = cholup.solve(MatrixType::Identity(rows,cols)); + rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / + matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); + rcond_est = cholup.rcond(); + VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); + + MatrixType neg = -symmLo; chollo.compute(neg); VERIFY(chollo.info()==NumericalIssue); @@ -114,7 +124,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m) VERIFY_IS_APPROX(MatrixType(chollo.matrixU().transpose().conjugate()), MatrixType(chollo.matrixL())); VERIFY_IS_APPROX(MatrixType(cholup.matrixL().transpose().conjugate()), MatrixType(cholup.matrixU())); VERIFY_IS_APPROX(MatrixType(cholup.matrixU().transpose().conjugate()), MatrixType(cholup.matrixL())); - + // test some special use cases of SelfCwiseBinaryOp: MatrixType m1 = MatrixType::Random(rows,cols), m2(rows,cols); m2 = m1; @@ -144,19 +154,38 @@ template<typename MatrixType> void cholesky(const MatrixType& m) SquareMatrixType symmLo = symm.template triangularView<Lower>(); LDLT<SquareMatrixType,Lower> ldltlo(symmLo); + VERIFY(ldltlo.info()==Success); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltlo.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); + const MatrixType symmLo_inverse = ldltlo.solve(MatrixType::Identity(rows,cols)); + RealScalar rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Lower>(symmLo)) / + matrix_l1_norm<MatrixType, Lower>(symmLo_inverse); + RealScalar rcond_est = ldltlo.rcond(); + // Verify that the estimated condition number is within a factor of 10 of the + // truth. + VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); + + LDLT<SquareMatrixType,Upper> ldltup(symmUp); + VERIFY(ldltup.info()==Success); VERIFY_IS_APPROX(symm, ldltup.reconstructedMatrix()); vecX = ldltup.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); matX = ldltup.solve(matB); VERIFY_IS_APPROX(symm * matX, matB); + // Verify that the estimated condition number is within a factor of 10 of the + // truth. + const MatrixType symmUp_inverse = ldltup.solve(MatrixType::Identity(rows,cols)); + rcond = (RealScalar(1) / matrix_l1_norm<MatrixType, Upper>(symmUp)) / + matrix_l1_norm<MatrixType, Upper>(symmUp_inverse); + rcond_est = ldltup.rcond(); + VERIFY(rcond_est > rcond / 10 && rcond_est < rcond * 10); + VERIFY_IS_APPROX(MatrixType(ldltlo.matrixL().transpose().conjugate()), MatrixType(ldltlo.matrixU())); VERIFY_IS_APPROX(MatrixType(ldltlo.matrixU().transpose().conjugate()), MatrixType(ldltlo.matrixL())); VERIFY_IS_APPROX(MatrixType(ldltup.matrixL().transpose().conjugate()), MatrixType(ldltup.matrixU())); @@ -185,7 +214,7 @@ template<typename MatrixType> void cholesky(const MatrixType& m) if(rows>=3) { SquareMatrixType A = symm; - int c = internal::random<int>(0,rows-2); + Index c = internal::random<Index>(0,rows-2); A.bottomRightCorner(c,c).setZero(); // Make sure a solution exists: vecX.setRandom(); @@ -196,11 +225,11 @@ template<typename MatrixType> void cholesky(const MatrixType& m) vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } - + // check non-full rank matrices if(rows>=3) { - int r = internal::random<int>(1,rows-1); + Index r = internal::random<Index>(1,rows-1); Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,r); SquareMatrixType A = a * a.adjoint(); // Make sure a solution exists: @@ -212,15 +241,17 @@ template<typename MatrixType> void cholesky(const MatrixType& m) vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(A * vecX, vecB); } - + // check matrices with a wide spectrum if(rows>=3) { + using std::pow; + using std::sqrt; RealScalar s = (std::min)(16,std::numeric_limits<RealScalar>::max_exponent10/8); Matrix<Scalar,Dynamic,Dynamic> a = Matrix<Scalar,Dynamic,Dynamic>::Random(rows,rows); Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(rows); - for(int k=0; k<rows; ++k) - d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s)); + for(Index k=0; k<rows; ++k) + d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s)); SquareMatrixType A = a * d.asDiagonal() * a.adjoint(); // Make sure a solution exists: vecX.setRandom(); @@ -229,7 +260,20 @@ template<typename MatrixType> void cholesky(const MatrixType& m) ldltlo.compute(A); VERIFY_IS_APPROX(A, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); - VERIFY_IS_APPROX(A * vecX, vecB); + + if(ldltlo.vectorD().real().cwiseAbs().minCoeff()>RealScalar(0)) + { + VERIFY_IS_APPROX(A * vecX,vecB); + } + else + { + RealScalar large_tol = sqrt(test_precision<RealScalar>()); + VERIFY((A * vecX).isApprox(vecB, large_tol)); + + ++g_test_level; + VERIFY_IS_APPROX(A * vecX,vecB); + --g_test_level; + } } } @@ -289,6 +333,7 @@ template<typename MatrixType> void cholesky_cplx(const MatrixType& m) RealMatrixType symmLo = symm.template triangularView<Lower>(); LDLT<RealMatrixType,Lower> ldltlo(symmLo); + VERIFY(ldltlo.info()==Success); VERIFY_IS_APPROX(symm, ldltlo.reconstructedMatrix()); vecX = ldltlo.solve(vecB); VERIFY_IS_APPROX(symm * vecX, vecB); @@ -314,46 +359,101 @@ template<typename MatrixType> void cholesky_bug241(const MatrixType& m) } // LDLT is not guaranteed to work for indefinite matrices, but happens to work fine if matrix is diagonal. -// This test checks that LDLT reports correctly that matrix is indefinite. +// This test checks that LDLT reports correctly that matrix is indefinite. // See http://forum.kde.org/viewtopic.php?f=74&t=106942 and bug 736 template<typename MatrixType> void cholesky_definiteness(const MatrixType& m) { eigen_assert(m.rows() == 2 && m.cols() == 2); MatrixType mat; LDLT<MatrixType> ldlt(2); - + { mat << 1, 0, 0, -1; ldlt.compute(mat); + VERIFY(ldlt.info()==Success); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } { mat << 1, 2, 2, 1; ldlt.compute(mat); + VERIFY(ldlt.info()==Success); VERIFY(!ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } { mat << 0, 0, 0, 0; ldlt.compute(mat); + VERIFY(ldlt.info()==Success); VERIFY(ldlt.isNegative()); VERIFY(ldlt.isPositive()); } { mat << 0, 0, 0, 1; ldlt.compute(mat); + VERIFY(ldlt.info()==Success); VERIFY(!ldlt.isNegative()); VERIFY(ldlt.isPositive()); } { mat << -1, 0, 0, 0; ldlt.compute(mat); + VERIFY(ldlt.info()==Success); VERIFY(ldlt.isNegative()); VERIFY(!ldlt.isPositive()); } } +template<typename> +void cholesky_faillure_cases() +{ + MatrixXd mat; + LDLT<MatrixXd> ldlt; + + { + mat.resize(2,2); + mat << 0, 1, 1, 0; + ldlt.compute(mat); + VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix()); + VERIFY(ldlt.info()==NumericalIssue); + } +#if (!EIGEN_ARCH_i386) || defined(EIGEN_VECTORIZE_SSE2) + { + mat.resize(3,3); + mat << -1, -3, 3, + -3, -8.9999999999999999999, 1, + 3, 1, 0; + ldlt.compute(mat); + VERIFY(ldlt.info()==NumericalIssue); + VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix()); + } +#endif + { + mat.resize(3,3); + mat << 1, 2, 3, + 2, 4, 1, + 3, 1, 0; + ldlt.compute(mat); + VERIFY(ldlt.info()==NumericalIssue); + VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix()); + } + + { + mat.resize(8,8); + mat << 0.1, 0, -0.1, 0, 0, 0, 1, 0, + 0, 4.24667, 0, 2.00333, 0, 0, 0, 0, + -0.1, 0, 0.2, 0, -0.1, 0, 0, 0, + 0, 2.00333, 0, 8.49333, 0, 2.00333, 0, 0, + 0, 0, -0.1, 0, 0.1, 0, 0, 1, + 0, 0, 0, 2.00333, 0, 4.24667, 0, 0, + 1, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 1, 0, 0, 0; + ldlt.compute(mat); + VERIFY(ldlt.info()==NumericalIssue); + VERIFY_IS_NOT_APPROX(mat,ldlt.reconstructedMatrix()); + } +} + template<typename MatrixType> void cholesky_verify_assert() { MatrixType tmp; @@ -384,10 +484,14 @@ void test_cholesky() CALL_SUBTEST_3( cholesky_definiteness(Matrix2d()) ); CALL_SUBTEST_4( cholesky(Matrix3f()) ); CALL_SUBTEST_5( cholesky(Matrix4d()) ); + s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE); CALL_SUBTEST_2( cholesky(MatrixXd(s,s)) ); + TEST_SET_BUT_UNUSED_VARIABLE(s) + s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/2); CALL_SUBTEST_6( cholesky_cplx(MatrixXcd(s,s)) ); + TEST_SET_BUT_UNUSED_VARIABLE(s) } CALL_SUBTEST_4( cholesky_verify_assert<Matrix3f>() ); @@ -398,7 +502,8 @@ void test_cholesky() // Test problem size constructors CALL_SUBTEST_9( LLT<MatrixXf>(10) ); CALL_SUBTEST_9( LDLT<MatrixXf>(10) ); - - TEST_SET_BUT_UNUSED_VARIABLE(s) + + CALL_SUBTEST_2( cholesky_faillure_cases<void>() ); + TEST_SET_BUT_UNUSED_VARIABLE(nb_temporaries) } |