summaryrefslogtreecommitdiffhomepage
path: root/eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp')
-rw-r--r--eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp84
1 files changed, 0 insertions, 84 deletions
diff --git a/eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp b/eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp
deleted file mode 100644
index 8bfa556..0000000
--- a/eigen/test/eigen2/eigen2_prec_inverse_4x4.cpp
+++ /dev/null
@@ -1,84 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#include "main.h"
-#include <Eigen/LU>
-#include <algorithm>
-
-template<typename T> std::string type_name() { return "other"; }
-template<> std::string type_name<float>() { return "float"; }
-template<> std::string type_name<double>() { return "double"; }
-template<> std::string type_name<int>() { return "int"; }
-template<> std::string type_name<std::complex<float> >() { return "complex<float>"; }
-template<> std::string type_name<std::complex<double> >() { return "complex<double>"; }
-template<> std::string type_name<std::complex<int> >() { return "complex<int>"; }
-
-#define EIGEN_DEBUG_VAR(x) std::cerr << #x << " = " << x << std::endl;
-
-template<typename T> inline typename NumTraits<T>::Real epsilon()
-{
- return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
-}
-
-template<typename MatrixType> void inverse_permutation_4x4()
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Vector4i indices(0,1,2,3);
- for(int i = 0; i < 24; ++i)
- {
- MatrixType m = MatrixType::Zero();
- m(indices(0),0) = 1;
- m(indices(1),1) = 1;
- m(indices(2),2) = 1;
- m(indices(3),3) = 1;
- MatrixType inv = m.inverse();
- double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() );
- VERIFY(error == 0.0);
- std::next_permutation(indices.data(),indices.data()+4);
- }
-}
-
-template<typename MatrixType> void inverse_general_4x4(int repeat)
-{
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- double error_sum = 0., error_max = 0.;
- for(int i = 0; i < repeat; ++i)
- {
- MatrixType m;
- RealScalar absdet;
- do {
- m = MatrixType::Random();
- absdet = ei_abs(m.determinant());
- } while(absdet < 10 * epsilon<Scalar>());
- MatrixType inv = m.inverse();
- double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
- error_sum += error;
- error_max = std::max(error_max, error);
- }
- std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl;
- double error_avg = error_sum / repeat;
- EIGEN_DEBUG_VAR(error_avg);
- EIGEN_DEBUG_VAR(error_max);
- VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25));
- VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0));
-}
-
-void test_eigen2_prec_inverse_4x4()
-{
- CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>()));
- CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) ));
-
- CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >()));
- CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) ));
-
- CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>()));
- CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat)));
-}