diff options
Diffstat (limited to 'eigen/test/eigen2/eigen2_sparse_basic.cpp')
-rw-r--r-- | eigen/test/eigen2/eigen2_sparse_basic.cpp | 317 |
1 files changed, 0 insertions, 317 deletions
diff --git a/eigen/test/eigen2/eigen2_sparse_basic.cpp b/eigen/test/eigen2/eigen2_sparse_basic.cpp deleted file mode 100644 index 0490776..0000000 --- a/eigen/test/eigen2/eigen2_sparse_basic.cpp +++ /dev/null @@ -1,317 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. Eigen itself is part of the KDE project. -// -// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template<typename SetterType,typename DenseType, typename Scalar, int Options> -bool test_random_setter(SparseMatrix<Scalar,Options>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) -{ - typedef SparseMatrix<Scalar,Options> SparseType; - { - sm.setZero(); - SetterType w(sm); - std::vector<Vector2i> remaining = nonzeroCoords; - while(!remaining.empty()) - { - int i = ei_random<int>(0,remaining.size()-1); - w(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); - remaining[i] = remaining.back(); - remaining.pop_back(); - } - } - return sm.isApprox(ref); -} - -template<typename SetterType,typename DenseType, typename T> -bool test_random_setter(DynamicSparseMatrix<T>& sm, const DenseType& ref, const std::vector<Vector2i>& nonzeroCoords) -{ - sm.setZero(); - std::vector<Vector2i> remaining = nonzeroCoords; - while(!remaining.empty()) - { - int i = ei_random<int>(0,remaining.size()-1); - sm.coeffRef(remaining[i].x(),remaining[i].y()) = ref.coeff(remaining[i].x(),remaining[i].y()); - remaining[i] = remaining.back(); - remaining.pop_back(); - } - return sm.isApprox(ref); -} - -template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) -{ - const int rows = ref.rows(); - const int cols = ref.cols(); - typedef typename SparseMatrixType::Scalar Scalar; - enum { Flags = SparseMatrixType::Flags }; - - double density = std::max(8./(rows*cols), 0.01); - typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; - typedef Matrix<Scalar,Dynamic,1> DenseVector; - Scalar eps = 1e-6; - - SparseMatrixType m(rows, cols); - DenseMatrix refMat = DenseMatrix::Zero(rows, cols); - DenseVector vec1 = DenseVector::Random(rows); - Scalar s1 = ei_random<Scalar>(); - - std::vector<Vector2i> zeroCoords; - std::vector<Vector2i> nonzeroCoords; - initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); - - if (zeroCoords.size()==0 || nonzeroCoords.size()==0) - return; - - // test coeff and coeffRef - for (int i=0; i<(int)zeroCoords.size(); ++i) - { - VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); - if(ei_is_same_type<SparseMatrixType,SparseMatrix<Scalar,Flags> >::ret) - VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); - } - VERIFY_IS_APPROX(m, refMat); - - m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); - refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); - - VERIFY_IS_APPROX(m, refMat); - /* - // test InnerIterators and Block expressions - for (int t=0; t<10; ++t) - { - int j = ei_random<int>(0,cols-1); - int i = ei_random<int>(0,rows-1); - int w = ei_random<int>(1,cols-j-1); - int h = ei_random<int>(1,rows-i-1); - -// VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); - for(int c=0; c<w; c++) - { - VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); - for(int r=0; r<h; r++) - { -// VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); - } - } -// for(int r=0; r<h; r++) -// { -// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); -// for(int c=0; c<w; c++) -// { -// VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); -// } -// } - } - - for(int c=0; c<cols; c++) - { - VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); - VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); - } - - for(int r=0; r<rows; r++) - { - VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); - VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); - } - */ - - // test SparseSetters - // coherent setter - // TODO extend the MatrixSetter -// { -// m.setZero(); -// VERIFY_IS_NOT_APPROX(m, refMat); -// SparseSetter<SparseMatrixType, FullyCoherentAccessPattern> w(m); -// for (int i=0; i<nonzeroCoords.size(); ++i) -// { -// w->coeffRef(nonzeroCoords[i].x(),nonzeroCoords[i].y()) = refMat.coeff(nonzeroCoords[i].x(),nonzeroCoords[i].y()); -// } -// } -// VERIFY_IS_APPROX(m, refMat); - - // random setter -// { -// m.setZero(); -// VERIFY_IS_NOT_APPROX(m, refMat); -// SparseSetter<SparseMatrixType, RandomAccessPattern> w(m); -// std::vector<Vector2i> remaining = nonzeroCoords; -// while(!remaining.empty()) -// { -// int i = ei_random<int>(0,remaining.size()-1); -// w->coeffRef(remaining[i].x(),remaining[i].y()) = refMat.coeff(remaining[i].x(),remaining[i].y()); -// remaining[i] = remaining.back(); -// remaining.pop_back(); -// } -// } -// VERIFY_IS_APPROX(m, refMat); - - VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdMapTraits> >(m,refMat,nonzeroCoords) )); - #ifdef EIGEN_UNORDERED_MAP_SUPPORT - VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, StdUnorderedMapTraits> >(m,refMat,nonzeroCoords) )); - #endif - #ifdef _DENSE_HASH_MAP_H_ - VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleDenseHashMapTraits> >(m,refMat,nonzeroCoords) )); - #endif - #ifdef _SPARSE_HASH_MAP_H_ - VERIFY(( test_random_setter<RandomSetter<SparseMatrixType, GoogleSparseHashMapTraits> >(m,refMat,nonzeroCoords) )); - #endif - - // test fillrand - { - DenseMatrix m1(rows,cols); - m1.setZero(); - SparseMatrixType m2(rows,cols); - m2.startFill(); - for (int j=0; j<cols; ++j) - { - for (int k=0; k<rows/2; ++k) - { - int i = ei_random<int>(0,rows-1); - if (m1.coeff(i,j)==Scalar(0)) - m2.fillrand(i,j) = m1(i,j) = ei_random<Scalar>(); - } - } - m2.endFill(); - VERIFY_IS_APPROX(m2,m1); - } - - // test RandomSetter - /*{ - SparseMatrixType m1(rows,cols), m2(rows,cols); - DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); - initSparse<Scalar>(density, refM1, m1); - { - Eigen::RandomSetter<SparseMatrixType > setter(m2); - for (int j=0; j<m1.outerSize(); ++j) - for (typename SparseMatrixType::InnerIterator i(m1,j); i; ++i) - setter(i.index(), j) = i.value(); - } - VERIFY_IS_APPROX(m1, m2); - }*/ -// std::cerr << m.transpose() << "\n\n" << refMat.transpose() << "\n\n"; -// VERIFY_IS_APPROX(m, refMat); - - // test basic computations - { - DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m1(rows, rows); - SparseMatrixType m2(rows, rows); - SparseMatrixType m3(rows, rows); - SparseMatrixType m4(rows, rows); - initSparse<Scalar>(density, refM1, m1); - initSparse<Scalar>(density, refM2, m2); - initSparse<Scalar>(density, refM3, m3); - initSparse<Scalar>(density, refM4, m4); - - VERIFY_IS_APPROX(m1+m2, refM1+refM2); - VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); - VERIFY_IS_APPROX(m3.cwise()*(m1+m2), refM3.cwise()*(refM1+refM2)); - VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); - - VERIFY_IS_APPROX(m1*=s1, refM1*=s1); - VERIFY_IS_APPROX(m1/=s1, refM1/=s1); - - VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); - VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); - - VERIFY_IS_APPROX(m1.col(0).eigen2_dot(refM2.row(0)), refM1.col(0).eigen2_dot(refM2.row(0))); - - refM4.setRandom(); - // sparse cwise* dense - VERIFY_IS_APPROX(m3.cwise()*refM4, refM3.cwise()*refM4); -// VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); - } - - // test innerVector() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse<Scalar>(density, refMat2, m2); - int j0 = ei_random(0,rows-1); - int j1 = ei_random(0,rows-1); - VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); - VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); - //m2.innerVector(j0) = 2*m2.innerVector(j1); - //refMat2.col(j0) = 2*refMat2.col(j1); - //VERIFY_IS_APPROX(m2, refMat2); - } - - // test innerVectors() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse<Scalar>(density, refMat2, m2); - int j0 = ei_random(0,rows-2); - int j1 = ei_random(0,rows-2); - int n0 = ei_random<int>(1,rows-std::max(j0,j1)); - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - //m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); - //refMat2.block(0,j0,rows,n0) = refMat2.block(0,j0,rows,n0) + refMat2.block(0,j1,rows,n0); - } - - // test transpose - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse<Scalar>(density, refMat2, m2); - VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); - VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); - } - - // test prune - { - SparseMatrixType m2(rows, rows); - DenseMatrix refM2(rows, rows); - refM2.setZero(); - int countFalseNonZero = 0; - int countTrueNonZero = 0; - m2.startFill(); - for (int j=0; j<m2.outerSize(); ++j) - for (int i=0; i<m2.innerSize(); ++i) - { - float x = ei_random<float>(0,1); - if (x<0.1) - { - // do nothing - } - else if (x<0.5) - { - countFalseNonZero++; - m2.fill(i,j) = Scalar(0); - } - else - { - countTrueNonZero++; - m2.fill(i,j) = refM2(i,j) = Scalar(1); - } - } - m2.endFill(); - VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); - VERIFY_IS_APPROX(m2, refM2); - m2.prune(1); - VERIFY(countTrueNonZero==m2.nonZeros()); - VERIFY_IS_APPROX(m2, refM2); - } -} - -void test_eigen2_sparse_basic() -{ - for(int i = 0; i < g_repeat; i++) { - CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(8, 8)) ); - CALL_SUBTEST_2( sparse_basic(SparseMatrix<std::complex<double> >(16, 16)) ); - CALL_SUBTEST_1( sparse_basic(SparseMatrix<double>(33, 33)) ); - - CALL_SUBTEST_3( sparse_basic(DynamicSparseMatrix<double>(8, 8)) ); - } -} |