diff options
Diffstat (limited to 'eigen/test/jacobisvd.cpp')
-rw-r--r-- | eigen/test/jacobisvd.cpp | 386 |
1 files changed, 25 insertions, 361 deletions
diff --git a/eigen/test/jacobisvd.cpp b/eigen/test/jacobisvd.cpp index 12c556e..7f5f715 100644 --- a/eigen/test/jacobisvd.cpp +++ b/eigen/test/jacobisvd.cpp @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// Copyright (C) 2008-2014 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla @@ -14,279 +14,47 @@ #include "main.h" #include <Eigen/SVD> -template<typename MatrixType, int QRPreconditioner> -void jacobisvd_check_full(const MatrixType& m, const JacobiSVD<MatrixType, QRPreconditioner>& svd) -{ - typedef typename MatrixType::Index Index; - Index rows = m.rows(); - Index cols = m.cols(); - - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime - }; - - typedef typename MatrixType::Scalar Scalar; - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime> MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime> MatrixVType; - - MatrixType sigma = MatrixType::Zero(rows,cols); - sigma.diagonal() = svd.singularValues().template cast<Scalar>(); - MatrixUType u = svd.matrixU(); - MatrixVType v = svd.matrixV(); - - VERIFY_IS_APPROX(m, u * sigma * v.adjoint()); - VERIFY_IS_UNITARY(u); - VERIFY_IS_UNITARY(v); -} - -template<typename MatrixType, int QRPreconditioner> -void jacobisvd_compare_to_full(const MatrixType& m, - unsigned int computationOptions, - const JacobiSVD<MatrixType, QRPreconditioner>& referenceSvd) -{ - typedef typename MatrixType::Index Index; - Index rows = m.rows(); - Index cols = m.cols(); - Index diagSize = (std::min)(rows, cols); - - JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); - - VERIFY_IS_APPROX(svd.singularValues(), referenceSvd.singularValues()); - if(computationOptions & ComputeFullU) - VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU()); - if(computationOptions & ComputeThinU) - VERIFY_IS_APPROX(svd.matrixU(), referenceSvd.matrixU().leftCols(diagSize)); - if(computationOptions & ComputeFullV) - VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV()); - if(computationOptions & ComputeThinV) - VERIFY_IS_APPROX(svd.matrixV(), referenceSvd.matrixV().leftCols(diagSize)); -} - -template<typename MatrixType, int QRPreconditioner> -void jacobisvd_solve(const MatrixType& m, unsigned int computationOptions) -{ - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - Index rows = m.rows(); - Index cols = m.cols(); - - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime - }; - - typedef Matrix<Scalar, RowsAtCompileTime, Dynamic> RhsType; - typedef Matrix<Scalar, ColsAtCompileTime, Dynamic> SolutionType; - - RhsType rhs = RhsType::Random(rows, internal::random<Index>(1, cols)); - JacobiSVD<MatrixType, QRPreconditioner> svd(m, computationOptions); - - if(internal::is_same<RealScalar,double>::value) svd.setThreshold(1e-8); - else if(internal::is_same<RealScalar,float>::value) svd.setThreshold(1e-4); - - SolutionType x = svd.solve(rhs); - - RealScalar residual = (m*x-rhs).norm(); - // Check that there is no significantly better solution in the neighborhood of x - if(!test_isMuchSmallerThan(residual,rhs.norm())) - { - // If the residual is very small, then we have an exact solution, so we are already good. - for(int k=0;k<x.rows();++k) - { - SolutionType y(x); - y.row(k).array() += 2*NumTraits<RealScalar>::epsilon(); - RealScalar residual_y = (m*y-rhs).norm(); - VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); - - y.row(k) = x.row(k).array() - 2*NumTraits<RealScalar>::epsilon(); - residual_y = (m*y-rhs).norm(); - VERIFY( test_isApprox(residual_y,residual) || residual < residual_y ); - } - } - - // evaluate normal equation which works also for least-squares solutions - if(internal::is_same<RealScalar,double>::value) - { - // This test is not stable with single precision. - // This is probably because squaring m signicantly affects the precision. - VERIFY_IS_APPROX(m.adjoint()*m*x,m.adjoint()*rhs); - } - - // check minimal norm solutions - { - // generate a full-rank m x n problem with m<n - enum { - RankAtCompileTime2 = ColsAtCompileTime==Dynamic ? Dynamic : (ColsAtCompileTime)/2+1, - RowsAtCompileTime3 = ColsAtCompileTime==Dynamic ? Dynamic : ColsAtCompileTime+1 - }; - typedef Matrix<Scalar, RankAtCompileTime2, ColsAtCompileTime> MatrixType2; - typedef Matrix<Scalar, RankAtCompileTime2, 1> RhsType2; - typedef Matrix<Scalar, ColsAtCompileTime, RankAtCompileTime2> MatrixType2T; - Index rank = RankAtCompileTime2==Dynamic ? internal::random<Index>(1,cols) : Index(RankAtCompileTime2); - MatrixType2 m2(rank,cols); - int guard = 0; - do { - m2.setRandom(); - } while(m2.jacobiSvd().setThreshold(test_precision<Scalar>()).rank()!=rank && (++guard)<10); - VERIFY(guard<10); - RhsType2 rhs2 = RhsType2::Random(rank); - // use QR to find a reference minimal norm solution - HouseholderQR<MatrixType2T> qr(m2.adjoint()); - Matrix<Scalar,Dynamic,1> tmp = qr.matrixQR().topLeftCorner(rank,rank).template triangularView<Upper>().adjoint().solve(rhs2); - tmp.conservativeResize(cols); - tmp.tail(cols-rank).setZero(); - SolutionType x21 = qr.householderQ() * tmp; - // now check with SVD - JacobiSVD<MatrixType2, ColPivHouseholderQRPreconditioner> svd2(m2, computationOptions); - SolutionType x22 = svd2.solve(rhs2); - VERIFY_IS_APPROX(m2*x21, rhs2); - VERIFY_IS_APPROX(m2*x22, rhs2); - VERIFY_IS_APPROX(x21, x22); - - // Now check with a rank deficient matrix - typedef Matrix<Scalar, RowsAtCompileTime3, ColsAtCompileTime> MatrixType3; - typedef Matrix<Scalar, RowsAtCompileTime3, 1> RhsType3; - Index rows3 = RowsAtCompileTime3==Dynamic ? internal::random<Index>(rank+1,2*cols) : Index(RowsAtCompileTime3); - Matrix<Scalar,RowsAtCompileTime3,Dynamic> C = Matrix<Scalar,RowsAtCompileTime3,Dynamic>::Random(rows3,rank); - MatrixType3 m3 = C * m2; - RhsType3 rhs3 = C * rhs2; - JacobiSVD<MatrixType3, ColPivHouseholderQRPreconditioner> svd3(m3, computationOptions); - SolutionType x3 = svd3.solve(rhs3); - if(svd3.rank()!=rank) { - std::cout << m3 << "\n\n"; - std::cout << svd3.singularValues().transpose() << "\n"; - std::cout << svd3.rank() << " == " << rank << "\n"; - std::cout << x21.norm() << " == " << x3.norm() << "\n"; - } -// VERIFY_IS_APPROX(m3*x3, rhs3); - VERIFY_IS_APPROX(m3*x21, rhs3); - VERIFY_IS_APPROX(m2*x3, rhs2); - - VERIFY_IS_APPROX(x21, x3); - } -} - -template<typename MatrixType, int QRPreconditioner> -void jacobisvd_test_all_computation_options(const MatrixType& m) -{ - if (QRPreconditioner == NoQRPreconditioner && m.rows() != m.cols()) - return; - JacobiSVD<MatrixType, QRPreconditioner> fullSvd(m, ComputeFullU|ComputeFullV); - CALL_SUBTEST(( jacobisvd_check_full(m, fullSvd) )); - CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeFullV) )); - - #if defined __INTEL_COMPILER - // remark #111: statement is unreachable - #pragma warning disable 111 - #endif - if(QRPreconditioner == FullPivHouseholderQRPreconditioner) - return; - - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU, fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullV, fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, 0, fullSvd) )); - - if (MatrixType::ColsAtCompileTime == Dynamic) { - // thin U/V are only available with dynamic number of columns - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeFullU|ComputeThinV, fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinV, fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeFullV, fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU , fullSvd) )); - CALL_SUBTEST(( jacobisvd_compare_to_full(m, ComputeThinU|ComputeThinV, fullSvd) )); - CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeFullU | ComputeThinV) )); - CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeFullV) )); - CALL_SUBTEST(( jacobisvd_solve<MatrixType, QRPreconditioner>(m, ComputeThinU | ComputeThinV) )); - - // test reconstruction - typedef typename MatrixType::Index Index; - Index diagSize = (std::min)(m.rows(), m.cols()); - JacobiSVD<MatrixType, QRPreconditioner> svd(m, ComputeThinU | ComputeThinV); - VERIFY_IS_APPROX(m, svd.matrixU().leftCols(diagSize) * svd.singularValues().asDiagonal() * svd.matrixV().leftCols(diagSize).adjoint()); - } -} +#define SVD_DEFAULT(M) JacobiSVD<M> +#define SVD_FOR_MIN_NORM(M) JacobiSVD<M,ColPivHouseholderQRPreconditioner> +#include "svd_common.h" +// Check all variants of JacobiSVD template<typename MatrixType> void jacobisvd(const MatrixType& a = MatrixType(), bool pickrandom = true) { MatrixType m = a; if(pickrandom) - { - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename MatrixType::Index Index; - Index diagSize = (std::min)(a.rows(), a.cols()); - RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4; - s = internal::random<RealScalar>(1,s); - Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize); - for(Index k=0; k<diagSize; ++k) - d(k) = d(k)*std::pow(RealScalar(10),internal::random<RealScalar>(-s,s)); - m = Matrix<Scalar,Dynamic,Dynamic>::Random(a.rows(),diagSize) * d.asDiagonal() * Matrix<Scalar,Dynamic,Dynamic>::Random(diagSize,a.cols()); - // cancel some coeffs - Index n = internal::random<Index>(0,m.size()-1); - for(Index i=0; i<n; ++i) - m(internal::random<Index>(0,m.rows()-1), internal::random<Index>(0,m.cols()-1)) = Scalar(0); - } + svd_fill_random(m); - CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, FullPivHouseholderQRPreconditioner>(m) )); - CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, ColPivHouseholderQRPreconditioner>(m) )); - CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, HouseholderQRPreconditioner>(m) )); - CALL_SUBTEST(( jacobisvd_test_all_computation_options<MatrixType, NoQRPreconditioner>(m) )); + CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> >(m, true) )); // check full only + CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner> >(m, false) )); + CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, HouseholderQRPreconditioner> >(m, false) )); + if(m.rows()==m.cols()) + CALL_SUBTEST(( svd_test_all_computation_options<JacobiSVD<MatrixType, NoQRPreconditioner> >(m, false) )); } template<typename MatrixType> void jacobisvd_verify_assert(const MatrixType& m) { - typedef typename MatrixType::Scalar Scalar; + svd_verify_assert<JacobiSVD<MatrixType> >(m); typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols(); enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; - typedef Matrix<Scalar, RowsAtCompileTime, 1> RhsType; - - RhsType rhs(rows); - - JacobiSVD<MatrixType> svd; - VERIFY_RAISES_ASSERT(svd.matrixU()) - VERIFY_RAISES_ASSERT(svd.singularValues()) - VERIFY_RAISES_ASSERT(svd.matrixV()) - VERIFY_RAISES_ASSERT(svd.solve(rhs)) MatrixType a = MatrixType::Zero(rows, cols); a.setZero(); - svd.compute(a, 0); - VERIFY_RAISES_ASSERT(svd.matrixU()) - VERIFY_RAISES_ASSERT(svd.matrixV()) - svd.singularValues(); - VERIFY_RAISES_ASSERT(svd.solve(rhs)) if (ColsAtCompileTime == Dynamic) { - svd.compute(a, ComputeThinU); - svd.matrixU(); - VERIFY_RAISES_ASSERT(svd.matrixV()) - VERIFY_RAISES_ASSERT(svd.solve(rhs)) - - svd.compute(a, ComputeThinV); - svd.matrixV(); - VERIFY_RAISES_ASSERT(svd.matrixU()) - VERIFY_RAISES_ASSERT(svd.solve(rhs)) - JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner> svd_fullqr; VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeFullU|ComputeThinV)) VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeThinV)) VERIFY_RAISES_ASSERT(svd_fullqr.compute(a, ComputeThinU|ComputeFullV)) } - else - { - VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinU)) - VERIFY_RAISES_ASSERT(svd.compute(a, ComputeThinV)) - } } template<typename MatrixType> @@ -302,126 +70,17 @@ void jacobisvd_method() VERIFY_IS_APPROX(m.jacobiSvd(ComputeFullU|ComputeFullV).solve(m), m); } -// work around stupid msvc error when constructing at compile time an expression that involves -// a division by zero, even if the numeric type has floating point -template<typename Scalar> -EIGEN_DONT_INLINE Scalar zero() { return Scalar(0); } - -// workaround aggressive optimization in ICC -template<typename T> EIGEN_DONT_INLINE T sub(T a, T b) { return a - b; } - -template<typename MatrixType> -void jacobisvd_inf_nan() -{ - // all this function does is verify we don't iterate infinitely on nan/inf values - - JacobiSVD<MatrixType> svd; - typedef typename MatrixType::Scalar Scalar; - Scalar some_inf = Scalar(1) / zero<Scalar>(); - VERIFY(sub(some_inf, some_inf) != sub(some_inf, some_inf)); - svd.compute(MatrixType::Constant(10,10,some_inf), ComputeFullU | ComputeFullV); - - Scalar nan = std::numeric_limits<Scalar>::quiet_NaN(); - VERIFY(nan != nan); - svd.compute(MatrixType::Constant(10,10,nan), ComputeFullU | ComputeFullV); - - MatrixType m = MatrixType::Zero(10,10); - m(internal::random<int>(0,9), internal::random<int>(0,9)) = some_inf; - svd.compute(m, ComputeFullU | ComputeFullV); - - m = MatrixType::Zero(10,10); - m(internal::random<int>(0,9), internal::random<int>(0,9)) = nan; - svd.compute(m, ComputeFullU | ComputeFullV); - - // regression test for bug 791 - m.resize(3,3); - m << 0, 2*NumTraits<Scalar>::epsilon(), 0.5, - 0, -0.5, 0, - nan, 0, 0; - svd.compute(m, ComputeFullU | ComputeFullV); -} - -// Regression test for bug 286: JacobiSVD loops indefinitely with some -// matrices containing denormal numbers. -void jacobisvd_bug286() -{ -#if defined __INTEL_COMPILER -// shut up warning #239: floating point underflow -#pragma warning push -#pragma warning disable 239 -#endif - Matrix2d M; - M << -7.90884e-313, -4.94e-324, - 0, 5.60844e-313; -#if defined __INTEL_COMPILER -#pragma warning pop -#endif - JacobiSVD<Matrix2d> svd; - svd.compute(M); // just check we don't loop indefinitely -} - -void jacobisvd_preallocate() -{ - Vector3f v(3.f, 2.f, 1.f); - MatrixXf m = v.asDiagonal(); - - internal::set_is_malloc_allowed(false); - VERIFY_RAISES_ASSERT(VectorXf tmp(10);) - JacobiSVD<MatrixXf> svd; - internal::set_is_malloc_allowed(true); - svd.compute(m); - VERIFY_IS_APPROX(svd.singularValues(), v); - - JacobiSVD<MatrixXf> svd2(3,3); - internal::set_is_malloc_allowed(false); - svd2.compute(m); - internal::set_is_malloc_allowed(true); - VERIFY_IS_APPROX(svd2.singularValues(), v); - VERIFY_RAISES_ASSERT(svd2.matrixU()); - VERIFY_RAISES_ASSERT(svd2.matrixV()); - svd2.compute(m, ComputeFullU | ComputeFullV); - VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); - VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); - internal::set_is_malloc_allowed(false); - svd2.compute(m); - internal::set_is_malloc_allowed(true); - - JacobiSVD<MatrixXf> svd3(3,3,ComputeFullU|ComputeFullV); - internal::set_is_malloc_allowed(false); - svd2.compute(m); - internal::set_is_malloc_allowed(true); - VERIFY_IS_APPROX(svd2.singularValues(), v); - VERIFY_IS_APPROX(svd2.matrixU(), Matrix3f::Identity()); - VERIFY_IS_APPROX(svd2.matrixV(), Matrix3f::Identity()); - internal::set_is_malloc_allowed(false); - svd2.compute(m, ComputeFullU|ComputeFullV); - internal::set_is_malloc_allowed(true); -} - void test_jacobisvd() { CALL_SUBTEST_3(( jacobisvd_verify_assert(Matrix3f()) )); CALL_SUBTEST_4(( jacobisvd_verify_assert(Matrix4d()) )); CALL_SUBTEST_7(( jacobisvd_verify_assert(MatrixXf(10,12)) )); CALL_SUBTEST_8(( jacobisvd_verify_assert(MatrixXcd(7,5)) )); + + CALL_SUBTEST_11(svd_all_trivial_2x2(jacobisvd<Matrix2cd>)); + CALL_SUBTEST_12(svd_all_trivial_2x2(jacobisvd<Matrix2d>)); for(int i = 0; i < g_repeat; i++) { - Matrix2cd m; - m << 0, 1, - 0, 1; - CALL_SUBTEST_1(( jacobisvd(m, false) )); - m << 1, 0, - 1, 0; - CALL_SUBTEST_1(( jacobisvd(m, false) )); - - Matrix2d n; - n << 0, 0, - 0, 0; - CALL_SUBTEST_2(( jacobisvd(n, false) )); - n << 0, 0, - 0, 1; - CALL_SUBTEST_2(( jacobisvd(n, false) )); - CALL_SUBTEST_3(( jacobisvd<Matrix3f>() )); CALL_SUBTEST_4(( jacobisvd<Matrix4d>() )); CALL_SUBTEST_5(( jacobisvd<Matrix<float,3,5> >() )); @@ -440,8 +99,14 @@ void test_jacobisvd() (void) c; // Test on inf/nan matrix - CALL_SUBTEST_7( jacobisvd_inf_nan<MatrixXf>() ); - CALL_SUBTEST_10( jacobisvd_inf_nan<MatrixXd>() ); + CALL_SUBTEST_7( (svd_inf_nan<JacobiSVD<MatrixXf>, MatrixXf>()) ); + CALL_SUBTEST_10( (svd_inf_nan<JacobiSVD<MatrixXd>, MatrixXd>()) ); + + // bug1395 test compile-time vectors as input + CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,6,1>()) )); + CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,6>()) )); + CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,Dynamic,1>(r)) )); + CALL_SUBTEST_13(( jacobisvd_verify_assert(Matrix<double,1,Dynamic>(c)) )); } CALL_SUBTEST_7(( jacobisvd<MatrixXf>(MatrixXf(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) )); @@ -455,8 +120,7 @@ void test_jacobisvd() CALL_SUBTEST_7( JacobiSVD<MatrixXf>(10,10) ); // Check that preallocation avoids subsequent mallocs - CALL_SUBTEST_9( jacobisvd_preallocate() ); + CALL_SUBTEST_9( svd_preallocate<void>() ); - // Regression check for bug 286 - CALL_SUBTEST_2( jacobisvd_bug286() ); + CALL_SUBTEST_2( svd_underoverflow<void>() ); } |