diff options
Diffstat (limited to 'eigen/test/qr_colpivoting.cpp')
-rw-r--r-- | eigen/test/qr_colpivoting.cpp | 206 |
1 files changed, 199 insertions, 7 deletions
diff --git a/eigen/test/qr_colpivoting.cpp b/eigen/test/qr_colpivoting.cpp index eb3feac..26ed27f 100644 --- a/eigen/test/qr_colpivoting.cpp +++ b/eigen/test/qr_colpivoting.cpp @@ -10,21 +10,103 @@ #include "main.h" #include <Eigen/QR> +#include <Eigen/SVD> + +template <typename MatrixType> +void cod() { + typedef typename MatrixType::Index Index; + + Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); + Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); + Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE); + Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1); + + typedef typename MatrixType::Scalar Scalar; + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, + MatrixType::RowsAtCompileTime> + MatrixQType; + MatrixType matrix; + createRandomPIMatrixOfRank(rank, rows, cols, matrix); + CompleteOrthogonalDecomposition<MatrixType> cod(matrix); + VERIFY(rank == cod.rank()); + VERIFY(cols - cod.rank() == cod.dimensionOfKernel()); + VERIFY(!cod.isInjective()); + VERIFY(!cod.isInvertible()); + VERIFY(!cod.isSurjective()); + + MatrixQType q = cod.householderQ(); + VERIFY_IS_UNITARY(q); + + MatrixType z = cod.matrixZ(); + VERIFY_IS_UNITARY(z); + + MatrixType t; + t.setZero(rows, cols); + t.topLeftCorner(rank, rank) = + cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>(); + + MatrixType c = q * t * z * cod.colsPermutation().inverse(); + VERIFY_IS_APPROX(matrix, c); + + MatrixType exact_solution = MatrixType::Random(cols, cols2); + MatrixType rhs = matrix * exact_solution; + MatrixType cod_solution = cod.solve(rhs); + VERIFY_IS_APPROX(rhs, matrix * cod_solution); + + // Verify that we get the same minimum-norm solution as the SVD. + JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV); + MatrixType svd_solution = svd.solve(rhs); + VERIFY_IS_APPROX(cod_solution, svd_solution); + + MatrixType pinv = cod.pseudoInverse(); + VERIFY_IS_APPROX(cod_solution, pinv * rhs); +} + +template <typename MatrixType, int Cols2> +void cod_fixedsize() { + enum { + Rows = MatrixType::RowsAtCompileTime, + Cols = MatrixType::ColsAtCompileTime + }; + typedef typename MatrixType::Scalar Scalar; + int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1); + Matrix<Scalar, Rows, Cols> matrix; + createRandomPIMatrixOfRank(rank, Rows, Cols, matrix); + CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > cod(matrix); + VERIFY(rank == cod.rank()); + VERIFY(Cols - cod.rank() == cod.dimensionOfKernel()); + VERIFY(cod.isInjective() == (rank == Rows)); + VERIFY(cod.isSurjective() == (rank == Cols)); + VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective())); + + Matrix<Scalar, Cols, Cols2> exact_solution; + exact_solution.setRandom(Cols, Cols2); + Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution; + Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs); + VERIFY_IS_APPROX(rhs, matrix * cod_solution); + + // Verify that we get the same minimum-norm solution as the SVD. + JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV); + Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs); + VERIFY_IS_APPROX(cod_solution, svd_solution); +} template<typename MatrixType> void qr() { + using std::sqrt; typedef typename MatrixType::Index Index; Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE); Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1); typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType; MatrixType m1; createRandomPIMatrixOfRank(rank,rows,cols,m1); ColPivHouseholderQR<MatrixType> qr(m1); - VERIFY(rank == qr.rank()); - VERIFY(cols - qr.rank() == qr.dimensionOfKernel()); + VERIFY_IS_EQUAL(rank, qr.rank()); + VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel()); VERIFY(!qr.isInjective()); VERIFY(!qr.isInvertible()); VERIFY(!qr.isSurjective()); @@ -36,26 +118,59 @@ template<typename MatrixType> void qr() MatrixType c = q * r * qr.colsPermutation().inverse(); VERIFY_IS_APPROX(m1, c); + // Verify that the absolute value of the diagonal elements in R are + // non-increasing until they reach the singularity threshold. + RealScalar threshold = + sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon(); + for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { + RealScalar x = numext::abs(r(i, i)); + RealScalar y = numext::abs(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (!test_isApproxOrLessThan(y, x)) { + for (Index j = 0; j < (std::min)(rows, cols); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << rank + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } + MatrixType m2 = MatrixType::Random(cols,cols2); MatrixType m3 = m1*m2; m2 = MatrixType::Random(cols,cols2); m2 = qr.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); + + { + Index size = rows; + do { + m1 = MatrixType::Random(size,size); + qr.compute(m1); + } while(!qr.isInvertible()); + MatrixType m1_inv = qr.inverse(); + m3 = m1 * MatrixType::Random(size,cols2); + m2 = qr.solve(m3); + VERIFY_IS_APPROX(m2, m1_inv*m3); + } } template<typename MatrixType, int Cols2> void qr_fixedsize() { + using std::sqrt; + using std::abs; enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime }; typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1); Matrix<Scalar,Rows,Cols> m1; createRandomPIMatrixOfRank(rank,Rows,Cols,m1); ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1); - VERIFY(rank == qr.rank()); - VERIFY(Cols - qr.rank() == qr.dimensionOfKernel()); - VERIFY(qr.isInjective() == (rank == Rows)); - VERIFY(qr.isSurjective() == (rank == Cols)); - VERIFY(qr.isInvertible() == (qr.isInjective() && qr.isSurjective())); + VERIFY_IS_EQUAL(rank, qr.rank()); + VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel()); + VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows)); + VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols)); + VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective())); Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>(); Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse(); @@ -66,6 +181,71 @@ template<typename MatrixType, int Cols2> void qr_fixedsize() m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2); m2 = qr.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); + // Verify that the absolute value of the diagonal elements in R are + // non-increasing until they reache the singularity threshold. + RealScalar threshold = + sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon(); + for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) { + RealScalar x = numext::abs(r(i, i)); + RealScalar y = numext::abs(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (!test_isApproxOrLessThan(y, x)) { + for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << rank + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } +} + +// This test is meant to verify that pivots are chosen such that +// even for a graded matrix, the diagonal of R falls of roughly +// monotonically until it reaches the threshold for singularity. +// We use the so-called Kahan matrix, which is a famous counter-example +// for rank-revealing QR. See +// http://www.netlib.org/lapack/lawnspdf/lawn176.pdf +// page 3 for more detail. +template<typename MatrixType> void qr_kahan_matrix() +{ + using std::sqrt; + using std::abs; + typedef typename MatrixType::Index Index; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + + Index rows = 300, cols = rows; + + MatrixType m1; + m1.setZero(rows,cols); + RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows); + RealScalar c = std::sqrt(1 - s*s); + RealScalar pow_s_i(1.0); // pow(s,i) + for (Index i = 0; i < rows; ++i) { + m1(i, i) = pow_s_i; + m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1); + pow_s_i *= s; + } + m1 = (m1 + m1.transpose()).eval(); + ColPivHouseholderQR<MatrixType> qr(m1); + MatrixType r = qr.matrixQR().template triangularView<Upper>(); + + RealScalar threshold = + std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon(); + for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) { + RealScalar x = numext::abs(r(i, i)); + RealScalar y = numext::abs(r(i + 1, i + 1)); + if (x < threshold && y < threshold) continue; + if (!test_isApproxOrLessThan(y, x)) { + for (Index j = 0; j < (std::min)(rows, cols); ++j) { + std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl; + } + std::cout << "Failure at i=" << i << ", rank=" << qr.rank() + << ", threshold=" << threshold << std::endl; + } + VERIFY_IS_APPROX_OR_LESS_THAN(y, x); + } } template<typename MatrixType> void qr_invertible() @@ -132,6 +312,15 @@ void test_qr_colpivoting() } for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( cod<MatrixXf>() ); + CALL_SUBTEST_2( cod<MatrixXd>() ); + CALL_SUBTEST_3( cod<MatrixXcd>() ); + CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() )); + CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() )); + CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() )); + } + + for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( qr_invertible<MatrixXf>() ); CALL_SUBTEST_2( qr_invertible<MatrixXd>() ); CALL_SUBTEST_6( qr_invertible<MatrixXcf>() ); @@ -147,4 +336,7 @@ void test_qr_colpivoting() // Test problem size constructors CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20)); + + CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() ); + CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() ); } |