diff options
Diffstat (limited to 'eigen/test/sparse_basic.cpp')
-rw-r--r-- | eigen/test/sparse_basic.cpp | 662 |
1 files changed, 392 insertions, 270 deletions
diff --git a/eigen/test/sparse_basic.cpp b/eigen/test/sparse_basic.cpp index abe6a9d..3849850 100644 --- a/eigen/test/sparse_basic.cpp +++ b/eigen/test/sparse_basic.cpp @@ -9,22 +9,28 @@ // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +static long g_realloc_count = 0; +#define EIGEN_SPARSE_COMPRESSED_STORAGE_REALLOCATE_PLUGIN g_realloc_count++; + #include "sparse.h" template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& ref) { - typedef typename SparseMatrixType::Index Index; - typedef Matrix<Index,2,1> Vector2; + typedef typename SparseMatrixType::StorageIndex StorageIndex; + typedef Matrix<StorageIndex,2,1> Vector2; const Index rows = ref.rows(); const Index cols = ref.cols(); + //const Index inner = ref.innerSize(); + //const Index outer = ref.outerSize(); + typedef typename SparseMatrixType::Scalar Scalar; + typedef typename SparseMatrixType::RealScalar RealScalar; enum { Flags = SparseMatrixType::Flags }; double density = (std::max)(8./(rows*cols), 0.01); typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; - typedef Matrix<Scalar,1,Dynamic> RowDenseVector; Scalar eps = 1e-6; Scalar s1 = internal::random<Scalar>(); @@ -37,94 +43,22 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re std::vector<Vector2> nonzeroCoords; initSparse<Scalar>(density, refMat, m, 0, &zeroCoords, &nonzeroCoords); - if (zeroCoords.size()==0 || nonzeroCoords.size()==0) - return; - // test coeff and coeffRef - for (int i=0; i<(int)zeroCoords.size(); ++i) + for (std::size_t i=0; i<zeroCoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN( m.coeff(zeroCoords[i].x(),zeroCoords[i].y()), eps ); if(internal::is_same<SparseMatrixType,SparseMatrix<Scalar,Flags> >::value) - VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[0].x(),zeroCoords[0].y()) = 5 ); + VERIFY_RAISES_ASSERT( m.coeffRef(zeroCoords[i].x(),zeroCoords[i].y()) = 5 ); } VERIFY_IS_APPROX(m, refMat); - m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); - refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); + if(!nonzeroCoords.empty()) { + m.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); + refMat.coeffRef(nonzeroCoords[0].x(), nonzeroCoords[0].y()) = Scalar(5); + } VERIFY_IS_APPROX(m, refMat); - - // test InnerIterators and Block expressions - for (int t=0; t<10; ++t) - { - int j = internal::random<int>(0,cols-1); - int i = internal::random<int>(0,rows-1); - int w = internal::random<int>(1,cols-j-1); - int h = internal::random<int>(1,rows-i-1); - VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); - for(int c=0; c<w; c++) - { - VERIFY_IS_APPROX(m.block(i,j,h,w).col(c), refMat.block(i,j,h,w).col(c)); - for(int r=0; r<h; r++) - { - VERIFY_IS_APPROX(m.block(i,j,h,w).col(c).coeff(r), refMat.block(i,j,h,w).col(c).coeff(r)); - VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); - } - } - for(int r=0; r<h; r++) - { - VERIFY_IS_APPROX(m.block(i,j,h,w).row(r), refMat.block(i,j,h,w).row(r)); - for(int c=0; c<w; c++) - { - VERIFY_IS_APPROX(m.block(i,j,h,w).row(r).coeff(c), refMat.block(i,j,h,w).row(r).coeff(c)); - VERIFY_IS_APPROX(m.block(i,j,h,w).coeff(r,c), refMat.block(i,j,h,w).coeff(r,c)); - } - } - - VERIFY_IS_APPROX(m.middleCols(j,w), refMat.middleCols(j,w)); - VERIFY_IS_APPROX(m.middleRows(i,h), refMat.middleRows(i,h)); - for(int r=0; r<h; r++) - { - VERIFY_IS_APPROX(m.middleCols(j,w).row(r), refMat.middleCols(j,w).row(r)); - VERIFY_IS_APPROX(m.middleRows(i,h).row(r), refMat.middleRows(i,h).row(r)); - for(int c=0; c<w; c++) - { - VERIFY_IS_APPROX(m.col(c).coeff(r), refMat.col(c).coeff(r)); - VERIFY_IS_APPROX(m.row(r).coeff(c), refMat.row(r).coeff(c)); - - VERIFY_IS_APPROX(m.middleCols(j,w).coeff(r,c), refMat.middleCols(j,w).coeff(r,c)); - VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); - if(m.middleCols(j,w).coeff(r,c) != Scalar(0)) - { - VERIFY_IS_APPROX(m.middleCols(j,w).coeffRef(r,c), refMat.middleCols(j,w).coeff(r,c)); - } - if(m.middleRows(i,h).coeff(r,c) != Scalar(0)) - { - VERIFY_IS_APPROX(m.middleRows(i,h).coeff(r,c), refMat.middleRows(i,h).coeff(r,c)); - } - } - } - for(int c=0; c<w; c++) - { - VERIFY_IS_APPROX(m.middleCols(j,w).col(c), refMat.middleCols(j,w).col(c)); - VERIFY_IS_APPROX(m.middleRows(i,h).col(c), refMat.middleRows(i,h).col(c)); - } - } - - for(int c=0; c<cols; c++) - { - VERIFY_IS_APPROX(m.col(c) + m.col(c), (m + m).col(c)); - VERIFY_IS_APPROX(m.col(c) + m.col(c), refMat.col(c) + refMat.col(c)); - } - - for(int r=0; r<rows; r++) - { - VERIFY_IS_APPROX(m.row(r) + m.row(r), (m + m).row(r)); - VERIFY_IS_APPROX(m.row(r) + m.row(r), refMat.row(r) + refMat.row(r)); - } - - // test assertion VERIFY_RAISES_ASSERT( m.coeffRef(-1,1) = 0 ); VERIFY_RAISES_ASSERT( m.coeffRef(0,m.cols()) = 0 ); @@ -135,17 +69,31 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); - if(internal::random<int>()%2) - m2.reserve(VectorXi::Constant(m2.outerSize(), 2)); + bool call_reserve = internal::random<int>()%2; + Index nnz = internal::random<int>(1,int(rows)/2); + if(call_reserve) + { + if(internal::random<int>()%2) + m2.reserve(VectorXi::Constant(m2.outerSize(), int(nnz))); + else + m2.reserve(m2.outerSize() * nnz); + } + g_realloc_count = 0; for (Index j=0; j<cols; ++j) { - for (Index k=0; k<rows/2; ++k) + for (Index k=0; k<nnz; ++k) { Index i = internal::random<Index>(0,rows-1); if (m1.coeff(i,j)==Scalar(0)) m2.insert(i,j) = m1(i,j) = internal::random<Scalar>(); } } + + if(call_reserve && !SparseMatrixType::IsRowMajor) + { + VERIFY(g_realloc_count==0); + } + m2.finalize(); VERIFY_IS_APPROX(m2,m1); } @@ -179,9 +127,9 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re DenseMatrix m1(rows,cols); m1.setZero(); SparseMatrixType m2(rows,cols); - VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? m2.innerSize() : std::max<int>(1,m2.innerSize()/8))); + VectorXi r(VectorXi::Constant(m2.outerSize(), ((mode%2)==0) ? int(m2.innerSize()) : std::max<int>(1,int(m2.innerSize())/8))); m2.reserve(r); - for (int k=0; k<rows*cols; ++k) + for (Index k=0; k<rows*cols; ++k) { Index i = internal::random<Index>(0,rows-1); Index j = internal::random<Index>(0,cols-1); @@ -195,110 +143,46 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re VERIFY_IS_APPROX(m2,m1); } - // test innerVector() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse<Scalar>(density, refMat2, m2); - Index j0 = internal::random<Index>(0,rows-1); - Index j1 = internal::random<Index>(0,rows-1); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.row(j0)); - else - VERIFY_IS_APPROX(m2.innerVector(j0), refMat2.col(j0)); - - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.row(j0)+refMat2.row(j1)); - else - VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), refMat2.col(j0)+refMat2.col(j1)); - - SparseMatrixType m3(rows,rows); - m3.reserve(VectorXi::Constant(rows,rows/2)); - for(Index j=0; j<rows; ++j) - for(Index k=0; k<j; ++k) - m3.insertByOuterInner(j,k) = k+1; - for(Index j=0; j<rows; ++j) - { - VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); - if(j>0) - VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); - } - m3.makeCompressed(); - for(Index j=0; j<rows; ++j) - { - VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); - if(j>0) - VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); - } - - //m2.innerVector(j0) = 2*m2.innerVector(j1); - //refMat2.col(j0) = 2*refMat2.col(j1); - //VERIFY_IS_APPROX(m2, refMat2); - } - - // test innerVectors() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); - initSparse<Scalar>(density, refMat2, m2); - if(internal::random<float>(0,1)>0.5) m2.makeCompressed(); - - Index j0 = internal::random<Index>(0,rows-2); - Index j1 = internal::random<Index>(0,rows-2); - Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); - else - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - - VERIFY_IS_APPROX(m2, refMat2); - - m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); - if(SparseMatrixType::IsRowMajor) - refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); - else - refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); - - VERIFY_IS_APPROX(m2, refMat2); - - } - // test basic computations { - DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM2 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM3 = DenseMatrix::Zero(rows, rows); - DenseMatrix refM4 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m1(rows, rows); - SparseMatrixType m2(rows, rows); - SparseMatrixType m3(rows, rows); - SparseMatrixType m4(rows, rows); + DenseMatrix refM1 = DenseMatrix::Zero(rows, cols); + DenseMatrix refM2 = DenseMatrix::Zero(rows, cols); + DenseMatrix refM3 = DenseMatrix::Zero(rows, cols); + DenseMatrix refM4 = DenseMatrix::Zero(rows, cols); + SparseMatrixType m1(rows, cols); + SparseMatrixType m2(rows, cols); + SparseMatrixType m3(rows, cols); + SparseMatrixType m4(rows, cols); initSparse<Scalar>(density, refM1, m1); initSparse<Scalar>(density, refM2, m2); initSparse<Scalar>(density, refM3, m3); initSparse<Scalar>(density, refM4, m4); + if(internal::random<bool>()) + m1.makeCompressed(); + + Index m1_nnz = m1.nonZeros(); + + VERIFY_IS_APPROX(m1*s1, refM1*s1); VERIFY_IS_APPROX(m1+m2, refM1+refM2); VERIFY_IS_APPROX(m1+m2+m3, refM1+refM2+refM3); VERIFY_IS_APPROX(m3.cwiseProduct(m1+m2), refM3.cwiseProduct(refM1+refM2)); VERIFY_IS_APPROX(m1*s1-m2, refM1*s1-refM2); - - VERIFY_IS_APPROX(m1*=s1, refM1*=s1); - VERIFY_IS_APPROX(m1/=s1, refM1/=s1); - - VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); - VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); + VERIFY_IS_APPROX(m4=m1/s1, refM1/s1); + VERIFY_IS_EQUAL(m4.nonZeros(), m1_nnz); if(SparseMatrixType::IsRowMajor) VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.row(0).dot(refM2.row(0))); else - VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.row(0)), refM1.col(0).dot(refM2.row(0))); + VERIFY_IS_APPROX(m1.innerVector(0).dot(refM2.col(0)), refM1.col(0).dot(refM2.col(0))); + + DenseVector rv = DenseVector::Random(m1.cols()); + DenseVector cv = DenseVector::Random(m1.rows()); + Index r = internal::random<Index>(0,m1.rows()-2); + Index c = internal::random<Index>(0,m1.cols()-1); + VERIFY_IS_APPROX(( m1.template block<1,Dynamic>(r,0,1,m1.cols()).dot(rv)) , refM1.row(r).dot(rv)); + VERIFY_IS_APPROX(m1.row(r).dot(rv), refM1.row(r).dot(rv)); + VERIFY_IS_APPROX(m1.col(c).dot(cv), refM1.col(c).dot(cv)); VERIFY_IS_APPROX(m1.conjugate(), refM1.conjugate()); VERIFY_IS_APPROX(m1.real(), refM1.real()); @@ -310,103 +194,163 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re VERIFY_IS_APPROX(refM4.cwiseProduct(m3), refM4.cwiseProduct(refM3)); // VERIFY_IS_APPROX(m3.cwise()/refM4, refM3.cwise()/refM4); + VERIFY_IS_APPROX(refM4 + m3, refM4 + refM3); + VERIFY_IS_APPROX(m3 + refM4, refM3 + refM4); + VERIFY_IS_APPROX(refM4 - m3, refM4 - refM3); + VERIFY_IS_APPROX(m3 - refM4, refM3 - refM4); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3.cwiseProduct(m3)).eval(), RealScalar(0.5)*refM4 + refM3.cwiseProduct(refM3)); + + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + m3*RealScalar(0.5)).eval(), RealScalar(0.5)*refM4 + RealScalar(0.5)*refM3); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); + VERIFY_IS_APPROX(((refM3+m3)+RealScalar(0.5)*m3).eval(), RealScalar(0.5)*refM3 + (refM3+refM3)); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (refM3+m3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); + VERIFY_IS_APPROX((RealScalar(0.5)*refM4 + (m3+refM3)).eval(), RealScalar(0.5)*refM4 + (refM3+refM3)); + + + VERIFY_IS_APPROX(m1.sum(), refM1.sum()); + + m4 = m1; refM4 = m4; + + VERIFY_IS_APPROX(m1*=s1, refM1*=s1); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + VERIFY_IS_APPROX(m1/=s1, refM1/=s1); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + + VERIFY_IS_APPROX(m1+=m2, refM1+=refM2); + VERIFY_IS_APPROX(m1-=m2, refM1-=refM2); + + if (rows>=2 && cols>=2) + { + VERIFY_RAISES_ASSERT( m1 += m1.innerVector(0) ); + VERIFY_RAISES_ASSERT( m1 -= m1.innerVector(0) ); + VERIFY_RAISES_ASSERT( refM1 -= m1.innerVector(0) ); + VERIFY_RAISES_ASSERT( refM1 += m1.innerVector(0) ); + m1 = m4; refM1 = refM4; + } + // test aliasing VERIFY_IS_APPROX((m1 = -m1), (refM1 = -refM1)); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 = m1.transpose()), (refM1 = refM1.transpose().eval())); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 = -m1.transpose()), (refM1 = -refM1.transpose().eval())); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + m1 = m4; refM1 = refM4; VERIFY_IS_APPROX((m1 += -m1), (refM1 += -refM1)); + VERIFY_IS_EQUAL(m1.nonZeros(), m1_nnz); + m1 = m4; refM1 = refM4; + + if(m1.isCompressed()) + { + VERIFY_IS_APPROX(m1.coeffs().sum(), m1.sum()); + m1.coeffs() += s1; + for(Index j = 0; j<m1.outerSize(); ++j) + for(typename SparseMatrixType::InnerIterator it(m1,j); it; ++it) + refM1(it.row(), it.col()) += s1; + VERIFY_IS_APPROX(m1, refM1); + } + + // and/or + { + typedef SparseMatrix<bool, SparseMatrixType::Options, typename SparseMatrixType::StorageIndex> SpBool; + SpBool mb1 = m1.real().template cast<bool>(); + SpBool mb2 = m2.real().template cast<bool>(); + VERIFY_IS_EQUAL(mb1.template cast<int>().sum(), refM1.real().template cast<bool>().count()); + VERIFY_IS_EQUAL((mb1 && mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); + VERIFY_IS_EQUAL((mb1 || mb2).template cast<int>().sum(), (refM1.real().template cast<bool>() || refM2.real().template cast<bool>()).count()); + SpBool mb3 = mb1 && mb2; + if(mb1.coeffs().all() && mb2.coeffs().all()) + { + VERIFY_IS_EQUAL(mb3.nonZeros(), (refM1.real().template cast<bool>() && refM2.real().template cast<bool>()).count()); + } + } } - // test transpose + // test reverse iterators { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); + DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); + SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); - VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); - VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); + std::vector<Scalar> ref_value(m2.innerSize()); + std::vector<Index> ref_index(m2.innerSize()); + if(internal::random<bool>()) + m2.makeCompressed(); + for(Index j = 0; j<m2.outerSize(); ++j) + { + Index count_forward = 0; - VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); + for(typename SparseMatrixType::InnerIterator it(m2,j); it; ++it) + { + ref_value[ref_value.size()-1-count_forward] = it.value(); + ref_index[ref_index.size()-1-count_forward] = it.index(); + count_forward++; + } + Index count_reverse = 0; + for(typename SparseMatrixType::ReverseInnerIterator it(m2,j); it; --it) + { + VERIFY_IS_APPROX( std::abs(ref_value[ref_value.size()-count_forward+count_reverse])+1, std::abs(it.value())+1); + VERIFY_IS_EQUAL( ref_index[ref_index.size()-count_forward+count_reverse] , it.index()); + count_reverse++; + } + VERIFY_IS_EQUAL(count_forward, count_reverse); + } } - - - // test generic blocks + // test transpose { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); + DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); + SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); - Index j0 = internal::random<Index>(0,rows-2); - Index j1 = internal::random<Index>(0,rows-2); - Index n0 = internal::random<Index>(1,rows-(std::max)(j0,j1)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); - - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), - refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - - Index i = internal::random<Index>(0,m2.outerSize()-1); - if(SparseMatrixType::IsRowMajor) { - m2.innerVector(i) = m2.innerVector(i) * s1; - refMat2.row(i) = refMat2.row(i) * s1; - VERIFY_IS_APPROX(m2,refMat2); - } else { - m2.innerVector(i) = m2.innerVector(i) * s1; - refMat2.col(i) = refMat2.col(i) * s1; - VERIFY_IS_APPROX(m2,refMat2); - } - - VERIFY_IS_APPROX(DenseVector(m2.col(j0)), refMat2.col(j0)); - VERIFY_IS_APPROX(m2.col(j0), refMat2.col(j0)); - - VERIFY_IS_APPROX(RowDenseVector(m2.row(j0)), refMat2.row(j0)); - VERIFY_IS_APPROX(m2.row(j0), refMat2.row(j0)); + VERIFY_IS_APPROX(m2.transpose().eval(), refMat2.transpose().eval()); + VERIFY_IS_APPROX(m2.transpose(), refMat2.transpose()); + + VERIFY_IS_APPROX(SparseMatrixType(m2.adjoint()), refMat2.adjoint()); - VERIFY_IS_APPROX(m2.block(j0,j1,n0,n0), refMat2.block(j0,j1,n0,n0)); - VERIFY_IS_APPROX((2*m2).block(j0,j1,n0,n0), (2*refMat2).block(j0,j1,n0,n0)); + // check isApprox handles opposite storage order + typename Transpose<SparseMatrixType>::PlainObject m3(m2); + VERIFY(m2.isApprox(m3)); } // test prune { - SparseMatrixType m2(rows, rows); - DenseMatrix refM2(rows, rows); + SparseMatrixType m2(rows, cols); + DenseMatrix refM2(rows, cols); refM2.setZero(); int countFalseNonZero = 0; int countTrueNonZero = 0; - for (Index j=0; j<m2.outerSize(); ++j) + m2.reserve(VectorXi::Constant(m2.outerSize(), int(m2.innerSize()))); + for (Index j=0; j<m2.cols(); ++j) { - m2.startVec(j); - for (Index i=0; i<m2.innerSize(); ++i) + for (Index i=0; i<m2.rows(); ++i) { float x = internal::random<float>(0,1); - if (x<0.1) + if (x<0.1f) { // do nothing } - else if (x<0.5) + else if (x<0.5f) { countFalseNonZero++; - m2.insertBackByOuterInner(j,i) = Scalar(0); + m2.insert(i,j) = Scalar(0); } else { countTrueNonZero++; - m2.insertBackByOuterInner(j,i) = Scalar(1); - if(SparseMatrixType::IsRowMajor) - refM2(j,i) = Scalar(1); - else - refM2(i,j) = Scalar(1); + m2.insert(i,j) = Scalar(1); + refM2(i,j) = Scalar(1); } } } - m2.finalize(); + if(internal::random<bool>()) + m2.makeCompressed(); VERIFY(countFalseNonZero+countTrueNonZero == m2.nonZeros()); - VERIFY_IS_APPROX(m2, refM2); + if(countTrueNonZero>0) + VERIFY_IS_APPROX(m2, refM2); m2.prune(Scalar(1)); VERIFY(countTrueNonZero==m2.nonZeros()); VERIFY_IS_APPROX(m2, refM2); @@ -414,29 +358,74 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re // test setFromTriplets { - typedef Triplet<Scalar,Index> TripletType; + typedef Triplet<Scalar,StorageIndex> TripletType; std::vector<TripletType> triplets; - int ntriplets = rows*cols; + Index ntriplets = rows*cols; triplets.reserve(ntriplets); - DenseMatrix refMat(rows,cols); - refMat.setZero(); - for(int i=0;i<ntriplets;++i) + DenseMatrix refMat_sum = DenseMatrix::Zero(rows,cols); + DenseMatrix refMat_prod = DenseMatrix::Zero(rows,cols); + DenseMatrix refMat_last = DenseMatrix::Zero(rows,cols); + + for(Index i=0;i<ntriplets;++i) { - Index r = internal::random<Index>(0,rows-1); - Index c = internal::random<Index>(0,cols-1); + StorageIndex r = internal::random<StorageIndex>(0,StorageIndex(rows-1)); + StorageIndex c = internal::random<StorageIndex>(0,StorageIndex(cols-1)); Scalar v = internal::random<Scalar>(); triplets.push_back(TripletType(r,c,v)); - refMat(r,c) += v; + refMat_sum(r,c) += v; + if(std::abs(refMat_prod(r,c))==0) + refMat_prod(r,c) = v; + else + refMat_prod(r,c) *= v; + refMat_last(r,c) = v; } SparseMatrixType m(rows,cols); m.setFromTriplets(triplets.begin(), triplets.end()); - VERIFY_IS_APPROX(m, refMat); + VERIFY_IS_APPROX(m, refMat_sum); + + m.setFromTriplets(triplets.begin(), triplets.end(), std::multiplies<Scalar>()); + VERIFY_IS_APPROX(m, refMat_prod); +#if (defined(__cplusplus) && __cplusplus >= 201103L) + m.setFromTriplets(triplets.begin(), triplets.end(), [] (Scalar,Scalar b) { return b; }); + VERIFY_IS_APPROX(m, refMat_last); +#endif + } + + // test Map + { + DenseMatrix refMat2(rows, cols), refMat3(rows, cols); + SparseMatrixType m2(rows, cols), m3(rows, cols); + initSparse<Scalar>(density, refMat2, m2); + initSparse<Scalar>(density, refMat3, m3); + { + Map<SparseMatrixType> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); + Map<SparseMatrixType> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); + VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); + VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); + } + { + MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat2(m2.rows(), m2.cols(), m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); + MappedSparseMatrix<Scalar,SparseMatrixType::Options,StorageIndex> mapMat3(m3.rows(), m3.cols(), m3.nonZeros(), m3.outerIndexPtr(), m3.innerIndexPtr(), m3.valuePtr(), m3.innerNonZeroPtr()); + VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); + VERIFY_IS_APPROX(mapMat2+mapMat3, refMat2+refMat3); + } + + Index i = internal::random<Index>(0,rows-1); + Index j = internal::random<Index>(0,cols-1); + m2.coeffRef(i,j) = 123; + if(internal::random<bool>()) + m2.makeCompressed(); + Map<SparseMatrixType> mapMat2(rows, cols, m2.nonZeros(), m2.outerIndexPtr(), m2.innerIndexPtr(), m2.valuePtr(), m2.innerNonZeroPtr()); + VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(123)); + VERIFY_IS_EQUAL(mapMat2.coeff(i,j),Scalar(123)); + mapMat2.coeffRef(i,j) = -123; + VERIFY_IS_EQUAL(m2.coeff(i,j),Scalar(-123)); } // test triangularView { - DenseMatrix refMat2(rows, rows), refMat3(rows, rows); - SparseMatrixType m2(rows, rows), m3(rows, rows); + DenseMatrix refMat2(rows, cols), refMat3(rows, cols); + SparseMatrixType m2(rows, cols), m3(rows, cols); initSparse<Scalar>(density, refMat2, m2); refMat3 = refMat2.template triangularView<Lower>(); m3 = m2.template triangularView<Lower>(); @@ -446,13 +435,15 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re m3 = m2.template triangularView<Upper>(); VERIFY_IS_APPROX(m3, refMat3); - refMat3 = refMat2.template triangularView<UnitUpper>(); - m3 = m2.template triangularView<UnitUpper>(); - VERIFY_IS_APPROX(m3, refMat3); + { + refMat3 = refMat2.template triangularView<UnitUpper>(); + m3 = m2.template triangularView<UnitUpper>(); + VERIFY_IS_APPROX(m3, refMat3); - refMat3 = refMat2.template triangularView<UnitLower>(); - m3 = m2.template triangularView<UnitLower>(); - VERIFY_IS_APPROX(m3, refMat3); + refMat3 = refMat2.template triangularView<UnitLower>(); + m3 = m2.template triangularView<UnitLower>(); + VERIFY_IS_APPROX(m3, refMat3); + } refMat3 = refMat2.template triangularView<StrictlyUpper>(); m3 = m2.template triangularView<StrictlyUpper>(); @@ -461,6 +452,10 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re refMat3 = refMat2.template triangularView<StrictlyLower>(); m3 = m2.template triangularView<StrictlyLower>(); VERIFY_IS_APPROX(m3, refMat3); + + // check sparse-triangular to dense + refMat3 = m2.template triangularView<StrictlyUpper>(); + VERIFY_IS_APPROX(refMat3, DenseMatrix(refMat2.template triangularView<StrictlyUpper>())); } // test selfadjointView @@ -472,6 +467,19 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re refMat3 = refMat2.template selfadjointView<Lower>(); m3 = m2.template selfadjointView<Lower>(); VERIFY_IS_APPROX(m3, refMat3); + + refMat3 += refMat2.template selfadjointView<Lower>(); + m3 += m2.template selfadjointView<Lower>(); + VERIFY_IS_APPROX(m3, refMat3); + + refMat3 -= refMat2.template selfadjointView<Lower>(); + m3 -= m2.template selfadjointView<Lower>(); + VERIFY_IS_APPROX(m3, refMat3); + + // selfadjointView only works for square matrices: + SparseMatrixType m4(rows, rows+1); + VERIFY_RAISES_ASSERT(m4.template selfadjointView<Lower>()); + VERIFY_RAISES_ASSERT(m4.template selfadjointView<Upper>()); } // test sparseView @@ -480,28 +488,59 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re SparseMatrixType m2(rows, rows); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.eval(), refMat2.sparseView().eval()); + + // sparse view on expressions: + VERIFY_IS_APPROX((s1*m2).eval(), (s1*refMat2).sparseView().eval()); + VERIFY_IS_APPROX((m2+m2).eval(), (refMat2+refMat2).sparseView().eval()); + VERIFY_IS_APPROX((m2*m2).eval(), (refMat2.lazyProduct(refMat2)).sparseView().eval()); + VERIFY_IS_APPROX((m2*m2).eval(), (refMat2*refMat2).sparseView().eval()); } // test diagonal { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, rows); - SparseMatrixType m2(rows, rows); + DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); + SparseMatrixType m2(rows, cols); initSparse<Scalar>(density, refMat2, m2); VERIFY_IS_APPROX(m2.diagonal(), refMat2.diagonal().eval()); + DenseVector d = m2.diagonal(); + VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); + d = m2.diagonal().array(); + VERIFY_IS_APPROX(d, refMat2.diagonal().eval()); + VERIFY_IS_APPROX(const_cast<const SparseMatrixType&>(m2).diagonal(), refMat2.diagonal().eval()); + + initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag); + m2.diagonal() += refMat2.diagonal(); + refMat2.diagonal() += refMat2.diagonal(); + VERIFY_IS_APPROX(m2, refMat2); + } + + // test diagonal to sparse + { + DenseVector d = DenseVector::Random(rows); + DenseMatrix refMat2 = d.asDiagonal(); + SparseMatrixType m2(rows, rows); + m2 = d.asDiagonal(); + VERIFY_IS_APPROX(m2, refMat2); + SparseMatrixType m3(d.asDiagonal()); + VERIFY_IS_APPROX(m3, refMat2); + refMat2 += d.asDiagonal(); + m2 += d.asDiagonal(); + VERIFY_IS_APPROX(m2, refMat2); } // test conservative resize { - std::vector< std::pair<Index,Index> > inc; - inc.push_back(std::pair<Index,Index>(-3,-2)); - inc.push_back(std::pair<Index,Index>(0,0)); - inc.push_back(std::pair<Index,Index>(3,2)); - inc.push_back(std::pair<Index,Index>(3,0)); - inc.push_back(std::pair<Index,Index>(0,3)); + std::vector< std::pair<StorageIndex,StorageIndex> > inc; + if(rows > 3 && cols > 2) + inc.push_back(std::pair<StorageIndex,StorageIndex>(-3,-2)); + inc.push_back(std::pair<StorageIndex,StorageIndex>(0,0)); + inc.push_back(std::pair<StorageIndex,StorageIndex>(3,2)); + inc.push_back(std::pair<StorageIndex,StorageIndex>(3,0)); + inc.push_back(std::pair<StorageIndex,StorageIndex>(0,3)); for(size_t i = 0; i< inc.size(); i++) { - Index incRows = inc[i].first; - Index incCols = inc[i].second; + StorageIndex incRows = inc[i].first; + StorageIndex incCols = inc[i].second; SparseMatrixType m1(rows, cols); DenseMatrix refMat1 = DenseMatrix::Zero(rows, cols); initSparse<Scalar>(density, refMat1, m1); @@ -546,21 +585,104 @@ template<typename SparseMatrixType> void sparse_basic(const SparseMatrixType& re refMat1.setIdentity(); VERIFY_IS_APPROX(m1, refMat1); } + + // test array/vector of InnerIterator + { + typedef typename SparseMatrixType::InnerIterator IteratorType; + + DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); + SparseMatrixType m2(rows, cols); + initSparse<Scalar>(density, refMat2, m2); + IteratorType static_array[2]; + static_array[0] = IteratorType(m2,0); + static_array[1] = IteratorType(m2,m2.outerSize()-1); + VERIFY( static_array[0] || m2.innerVector(static_array[0].outer()).nonZeros() == 0 ); + VERIFY( static_array[1] || m2.innerVector(static_array[1].outer()).nonZeros() == 0 ); + if(static_array[0] && static_array[1]) + { + ++(static_array[1]); + static_array[1] = IteratorType(m2,0); + VERIFY( static_array[1] ); + VERIFY( static_array[1].index() == static_array[0].index() ); + VERIFY( static_array[1].outer() == static_array[0].outer() ); + VERIFY( static_array[1].value() == static_array[0].value() ); + } + + std::vector<IteratorType> iters(2); + iters[0] = IteratorType(m2,0); + iters[1] = IteratorType(m2,m2.outerSize()-1); + } +} + + +template<typename SparseMatrixType> +void big_sparse_triplet(Index rows, Index cols, double density) { + typedef typename SparseMatrixType::StorageIndex StorageIndex; + typedef typename SparseMatrixType::Scalar Scalar; + typedef Triplet<Scalar,Index> TripletType; + std::vector<TripletType> triplets; + double nelements = density * rows*cols; + VERIFY(nelements>=0 && nelements < NumTraits<StorageIndex>::highest()); + Index ntriplets = Index(nelements); + triplets.reserve(ntriplets); + Scalar sum = Scalar(0); + for(Index i=0;i<ntriplets;++i) + { + Index r = internal::random<Index>(0,rows-1); + Index c = internal::random<Index>(0,cols-1); + Scalar v = internal::random<Scalar>(); + triplets.push_back(TripletType(r,c,v)); + sum += v; + } + SparseMatrixType m(rows,cols); + m.setFromTriplets(triplets.begin(), triplets.end()); + VERIFY(m.nonZeros() <= ntriplets); + VERIFY_IS_APPROX(sum, m.sum()); } + void test_sparse_basic() { for(int i = 0; i < g_repeat; i++) { - int s = Eigen::internal::random<int>(1,50); - EIGEN_UNUSED_VARIABLE(s); + int r = Eigen::internal::random<int>(1,200), c = Eigen::internal::random<int>(1,200); + if(Eigen::internal::random<int>(0,4) == 0) { + r = c; // check square matrices in 25% of tries + } + EIGEN_UNUSED_VARIABLE(r+c); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(1, 1)) )); CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(8, 8)) )); - CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(s, s)) )); - CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(s, s)) )); - CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(s, s)) )); - CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,long int>(s, s)) )); - CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,long int>(s, s)) )); + CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, ColMajor>(r, c)) )); + CALL_SUBTEST_2(( sparse_basic(SparseMatrix<std::complex<double>, RowMajor>(r, c)) )); + CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double>(r, c)) )); + CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,ColMajor,long int>(r, c)) )); + CALL_SUBTEST_5(( sparse_basic(SparseMatrix<double,RowMajor,long int>(r, c)) )); - CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(s), short(s))) )); - CALL_SUBTEST_1(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(s), short(s))) )); + r = Eigen::internal::random<int>(1,100); + c = Eigen::internal::random<int>(1,100); + if(Eigen::internal::random<int>(0,4) == 0) { + r = c; // check square matrices in 25% of tries + } + + CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,ColMajor,short int>(short(r), short(c))) )); + CALL_SUBTEST_6(( sparse_basic(SparseMatrix<double,RowMajor,short int>(short(r), short(c))) )); + } + + // Regression test for bug 900: (manually insert higher values here, if you have enough RAM): + CALL_SUBTEST_3((big_sparse_triplet<SparseMatrix<float, RowMajor, int> >(10000, 10000, 0.125))); + CALL_SUBTEST_4((big_sparse_triplet<SparseMatrix<double, ColMajor, long int> >(10000, 10000, 0.125))); + + // Regression test for bug 1105 +#ifdef EIGEN_TEST_PART_7 + { + int n = Eigen::internal::random<int>(200,600); + SparseMatrix<std::complex<double>,0, long> mat(n, n); + std::complex<double> val; + + for(int i=0; i<n; ++i) + { + mat.coeffRef(i, i%(n/10)) = val; + VERIFY(mat.data().allocatedSize()<20*n); + } } +#endif } |