diff options
Diffstat (limited to 'eigen/test/sparse_solver.h')
-rw-r--r-- | eigen/test/sparse_solver.h | 386 |
1 files changed, 278 insertions, 108 deletions
diff --git a/eigen/test/sparse_solver.h b/eigen/test/sparse_solver.h index e1619d6..5145bc3 100644 --- a/eigen/test/sparse_solver.h +++ b/eigen/test/sparse_solver.h @@ -9,68 +9,123 @@ #include "sparse.h" #include <Eigen/SparseCore> +#include <sstream> + +template<typename Solver, typename Rhs, typename Guess,typename Result> +void solve_with_guess(IterativeSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& g, Result &x) { + if(internal::random<bool>()) + { + // With a temporary through evaluator<SolveWithGuess> + x = solver.derived().solveWithGuess(b,g) + Result::Zero(x.rows(), x.cols()); + } + else + { + // direct evaluation within x through Assignment<Result,SolveWithGuess> + x = solver.derived().solveWithGuess(b.derived(),g); + } +} + +template<typename Solver, typename Rhs, typename Guess,typename Result> +void solve_with_guess(SparseSolverBase<Solver>& solver, const MatrixBase<Rhs>& b, const Guess& , Result& x) { + if(internal::random<bool>()) + x = solver.derived().solve(b) + Result::Zero(x.rows(), x.cols()); + else + x = solver.derived().solve(b); +} + +template<typename Solver, typename Rhs, typename Guess,typename Result> +void solve_with_guess(SparseSolverBase<Solver>& solver, const SparseMatrixBase<Rhs>& b, const Guess& , Result& x) { + x = solver.derived().solve(b); +} template<typename Solver, typename Rhs, typename DenseMat, typename DenseRhs> void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const DenseMat& dA, const DenseRhs& db) { typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; + typedef typename Mat::StorageIndex StorageIndex; - DenseRhs refX = dA.lu().solve(db); + DenseRhs refX = dA.householderQr().solve(db); { - Rhs x(b.rows(), b.cols()); + Rhs x(A.cols(), b.cols()); Rhs oldb = b; solver.compute(A); if (solver.info() != Success) { - std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n"; - exit(0); - return; + std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n"; + VERIFY(solver.info() == Success); } x = solver.solve(b); if (solver.info() != Success) { - std::cerr << "sparse solver testing: solving failed\n"; + std::cerr << "WARNING | sparse solver testing: solving failed (" << typeid(Solver).name() << ")\n"; return; } VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); + VERIFY(x.isApprox(refX,test_precision<Scalar>())); + x.setZero(); + solve_with_guess(solver, b, x, x); + VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API"); + VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); VERIFY(x.isApprox(refX,test_precision<Scalar>())); + x.setZero(); // test the analyze/factorize API solver.analyzePattern(A); solver.factorize(A); - if (solver.info() != Success) - { - std::cerr << "sparse solver testing: factorization failed (check_sparse_solving)\n"; - exit(0); - return; - } + VERIFY(solver.info() == Success && "factorization failed when using analyzePattern/factorize API"); x = solver.solve(b); - if (solver.info() != Success) - { - std::cerr << "sparse solver testing: solving failed\n"; - return; - } + VERIFY(solver.info() == Success && "solving failed when using analyzePattern/factorize API"); VERIFY(oldb.isApprox(b) && "sparse solver testing: the rhs should not be modified!"); - VERIFY(x.isApprox(refX,test_precision<Scalar>())); - } - - // test dense Block as the result and rhs: - { - DenseRhs x(db.rows(), db.cols()); - DenseRhs oldb(db); + x.setZero(); - x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols())); - VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!"); - VERIFY(x.isApprox(refX,test_precision<Scalar>())); + // test with Map + MappedSparseMatrix<Scalar,Mat::Options,StorageIndex> Am(A.rows(), A.cols(), A.nonZeros(), const_cast<StorageIndex*>(A.outerIndexPtr()), const_cast<StorageIndex*>(A.innerIndexPtr()), const_cast<Scalar*>(A.valuePtr())); + solver.compute(Am); + VERIFY(solver.info() == Success && "factorization failed when using Map"); + DenseRhs dx(refX); + dx.setZero(); + Map<DenseRhs> xm(dx.data(), dx.rows(), dx.cols()); + Map<const DenseRhs> bm(db.data(), db.rows(), db.cols()); + xm = solver.solve(bm); + VERIFY(solver.info() == Success && "solving failed when using Map"); + VERIFY(oldb.isApprox(bm) && "sparse solver testing: the rhs should not be modified!"); + VERIFY(xm.isApprox(refX,test_precision<Scalar>())); } - + // if not too large, do some extra check: if(A.rows()<2000) { + // test initialization ctor + { + Rhs x(b.rows(), b.cols()); + Solver solver2(A); + VERIFY(solver2.info() == Success); + x = solver2.solve(b); + VERIFY(x.isApprox(refX,test_precision<Scalar>())); + } + + // test dense Block as the result and rhs: + { + DenseRhs x(refX.rows(), refX.cols()); + DenseRhs oldb(db); + x.setZero(); + x.block(0,0,x.rows(),x.cols()) = solver.solve(db.block(0,0,db.rows(),db.cols())); + VERIFY(oldb.isApprox(db) && "sparse solver testing: the rhs should not be modified!"); + VERIFY(x.isApprox(refX,test_precision<Scalar>())); + } + + // test uncompressed inputs + { + Mat A2 = A; + A2.reserve((ArrayXf::Random(A.outerSize())+2).template cast<typename Mat::StorageIndex>().eval()); + solver.compute(A2); + Rhs x = solver.solve(b); + VERIFY(x.isApprox(refX,test_precision<Scalar>())); + } // test expression as input { @@ -86,41 +141,35 @@ void check_sparse_solving(Solver& solver, const typename Solver::MatrixType& A, } template<typename Solver, typename Rhs> -void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const Rhs& refX) +void check_sparse_solving_real_cases(Solver& solver, const typename Solver::MatrixType& A, const Rhs& b, const typename Solver::MatrixType& fullA, const Rhs& refX) { typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; typedef typename Mat::RealScalar RealScalar; - Rhs x(b.rows(), b.cols()); - + Rhs x(A.cols(), b.cols()); + solver.compute(A); if (solver.info() != Success) { - std::cerr << "sparse solver testing: factorization failed (check_sparse_solving_real_cases)\n"; - exit(0); - return; + std::cerr << "ERROR | sparse solver testing, factorization failed (" << typeid(Solver).name() << ")\n"; + VERIFY(solver.info() == Success); } x = solver.solve(b); + if (solver.info() != Success) { - std::cerr << "sparse solver testing: solving failed\n"; + std::cerr << "WARNING | sparse solver testing, solving failed (" << typeid(Solver).name() << ")\n"; return; } - RealScalar res_error; - // Compute the norm of the relative error - if(refX.size() != 0) - res_error = (refX - x).norm()/refX.norm(); - else - { - // Compute the relative residual norm - res_error = (b - A * x).norm()/b.norm(); - } - if (res_error > test_precision<Scalar>() ){ - std::cerr << "Test " << g_test_stack.back() << " failed in "EI_PP_MAKE_STRING(__FILE__) - << " (" << EI_PP_MAKE_STRING(__LINE__) << ")" << std::endl << std::endl; - abort(); + RealScalar res_error = (fullA*x-b).norm()/b.norm(); + VERIFY( (res_error <= test_precision<Scalar>() ) && "sparse solver failed without noticing it"); + + + if(refX.size() != 0 && (refX - x).norm()/refX.norm() > test_precision<Scalar>()) + { + std::cerr << "WARNING | found solution is different from the provided reference one\n"; } } @@ -133,7 +182,7 @@ void check_sparse_determinant(Solver& solver, const typename Solver::MatrixType& solver.compute(A); if (solver.info() != Success) { - std::cerr << "sparse solver testing: factorization failed (check_sparse_determinant)\n"; + std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_determinant)\n"; return; } @@ -150,7 +199,7 @@ void check_sparse_abs_determinant(Solver& solver, const typename Solver::MatrixT solver.compute(A); if (solver.info() != Success) { - std::cerr << "sparse solver testing: factorization failed (check_sparse_abs_determinant)\n"; + std::cerr << "WARNING | sparse solver testing: factorization failed (check_sparse_abs_determinant)\n"; return; } @@ -197,13 +246,33 @@ inline std::string get_matrixfolder() mat_folder = mat_folder + static_cast<std::string>("/real/"); return mat_folder; } +std::string sym_to_string(int sym) +{ + if(sym==Symmetric) return "Symmetric "; + if(sym==SPD) return "SPD "; + return ""; +} +template<typename Derived> +std::string solver_stats(const IterativeSolverBase<Derived> &solver) +{ + std::stringstream ss; + ss << solver.iterations() << " iters, error: " << solver.error(); + return ss.str(); +} +template<typename Derived> +std::string solver_stats(const SparseSolverBase<Derived> &/*solver*/) +{ + return ""; +} #endif -template<typename Solver> void check_sparse_spd_solving(Solver& solver) +template<typename Solver> void check_sparse_spd_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000) { typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; - typedef SparseMatrix<Scalar,ColMajor> SpMat; + typedef typename Mat::StorageIndex StorageIndex; + typedef SparseMatrix<Scalar,ColMajor, StorageIndex> SpMat; + typedef SparseVector<Scalar, 0, StorageIndex> SpVec; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; @@ -211,7 +280,7 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver) Mat A, halfA; DenseMatrix dA; for (int i = 0; i < g_repeat; i++) { - int size = generate_sparse_spd_problem(solver, A, halfA, dA); + int size = generate_sparse_spd_problem(solver, A, halfA, dA, maxSize); // generate the right hand sides int rhsCols = internal::random<int>(1,16); @@ -220,13 +289,17 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver) DenseVector b = DenseVector::Random(size); DenseMatrix dB(size,rhsCols); initSparse<Scalar>(density, dB, B, ForceNonZeroDiag); + SpVec c = B.col(0); + DenseVector dc = dB.col(0); - check_sparse_solving(solver, A, b, dA, b); - check_sparse_solving(solver, halfA, b, dA, b); - check_sparse_solving(solver, A, dB, dA, dB); - check_sparse_solving(solver, halfA, dB, dA, dB); - check_sparse_solving(solver, A, B, dA, dB); - check_sparse_solving(solver, halfA, B, dA, dB); + CALL_SUBTEST( check_sparse_solving(solver, A, b, dA, b) ); + CALL_SUBTEST( check_sparse_solving(solver, halfA, b, dA, b) ); + CALL_SUBTEST( check_sparse_solving(solver, A, dB, dA, dB) ); + CALL_SUBTEST( check_sparse_solving(solver, halfA, dB, dA, dB) ); + CALL_SUBTEST( check_sparse_solving(solver, A, B, dA, dB) ); + CALL_SUBTEST( check_sparse_solving(solver, halfA, B, dA, dB) ); + CALL_SUBTEST( check_sparse_solving(solver, A, c, dA, dc) ); + CALL_SUBTEST( check_sparse_solving(solver, halfA, c, dA, dc) ); // check only once if(i==0) @@ -237,25 +310,44 @@ template<typename Solver> void check_sparse_spd_solving(Solver& solver) } // First, get the folder -#ifdef TEST_REAL_CASES - if (internal::is_same<Scalar, float>::value - || internal::is_same<Scalar, std::complex<float> >::value) - return ; - - std::string mat_folder = get_matrixfolder<Scalar>(); - MatrixMarketIterator<Scalar> it(mat_folder); - for (; it; ++it) +#ifdef TEST_REAL_CASES + // Test real problems with double precision only + if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value) { - if (it.sym() == SPD){ - Mat halfA; - PermutationMatrix<Dynamic, Dynamic, Index> pnull; - halfA.template selfadjointView<Solver::UpLo>() = it.matrix().template triangularView<Eigen::Lower>().twistedBy(pnull); - - std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n"; - check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX()); - check_sparse_solving_real_cases(solver, halfA, it.rhs(), it.refX()); + std::string mat_folder = get_matrixfolder<Scalar>(); + MatrixMarketIterator<Scalar> it(mat_folder); + for (; it; ++it) + { + if (it.sym() == SPD){ + A = it.matrix(); + if(A.diagonal().size() <= maxRealWorldSize) + { + DenseVector b = it.rhs(); + DenseVector refX = it.refX(); + PermutationMatrix<Dynamic, Dynamic, StorageIndex> pnull; + halfA.resize(A.rows(), A.cols()); + if(Solver::UpLo == (Lower|Upper)) + halfA = A; + else + halfA.template selfadjointView<Solver::UpLo>() = A.template triangularView<Eigen::Lower>().twistedBy(pnull); + + std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname() + << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl; + CALL_SUBTEST( check_sparse_solving_real_cases(solver, A, b, A, refX) ); + std::string stats = solver_stats(solver); + if(stats.size()>0) + std::cout << "INFO | " << stats << std::endl; + CALL_SUBTEST( check_sparse_solving_real_cases(solver, halfA, b, A, refX) ); + } + else + { + std::cout << "INFO | Skip sparse problem \"" << it.matname() << "\" (too large)" << std::endl; + } + } } } +#else + EIGEN_UNUSED_VARIABLE(maxRealWorldSize); #endif } @@ -277,37 +369,39 @@ template<typename Solver> void check_sparse_spd_determinant(Solver& solver) } template<typename Solver, typename DenseMat> -int generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300) +Index generate_sparse_square_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag) { typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; - int size = internal::random<int>(1,maxSize); + Index size = internal::random<int>(1,maxSize); double density = (std::max)(8./(size*size), 0.01); A.resize(size,size); dA.resize(size,size); - initSparse<Scalar>(density, dA, A, ForceNonZeroDiag); + initSparse<Scalar>(density, dA, A, options); return size; } struct prune_column { - int m_col; - prune_column(int col) : m_col(col) {} + Index m_col; + prune_column(Index col) : m_col(col) {} template<class Scalar> - bool operator()(int, int col, const Scalar&) const { + bool operator()(Index, Index col, const Scalar&) const { return col != m_col; } }; -template<typename Solver> void check_sparse_square_solving(Solver& solver, bool checkDeficient = false) + +template<typename Solver> void check_sparse_square_solving(Solver& solver, int maxSize = 300, int maxRealWorldSize = 100000, bool checkDeficient = false) { typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; - typedef SparseMatrix<Scalar,ColMajor> SpMat; + typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat; + typedef SparseVector<Scalar, 0, typename Mat::StorageIndex> SpVec; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; typedef Matrix<Scalar,Dynamic,1> DenseVector; @@ -316,7 +410,7 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, bool Mat A; DenseMatrix dA; for (int i = 0; i < g_repeat; i++) { - int size = generate_sparse_square_problem(solver, A, dA); + Index size = generate_sparse_square_problem(solver, A, dA, maxSize); A.makeCompressed(); DenseVector b = DenseVector::Random(size); @@ -325,9 +419,12 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, bool double density = (std::max)(8./(size*rhsCols), 0.1); initSparse<Scalar>(density, dB, B, ForceNonZeroDiag); B.makeCompressed(); - check_sparse_solving(solver, A, b, dA, b); - check_sparse_solving(solver, A, dB, dA, dB); - check_sparse_solving(solver, A, B, dA, dB); + SpVec c = B.col(0); + DenseVector dc = dB.col(0); + CALL_SUBTEST(check_sparse_solving(solver, A, b, dA, b)); + CALL_SUBTEST(check_sparse_solving(solver, A, dB, dA, dB)); + CALL_SUBTEST(check_sparse_solving(solver, A, B, dA, dB)); + CALL_SUBTEST(check_sparse_solving(solver, A, c, dA, dc)); // check only once if(i==0) @@ -337,7 +434,7 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, bool } // regression test for Bug 792 (structurally rank deficient matrices): if(checkDeficient && size>1) { - int col = internal::random<int>(0,size-1); + Index col = internal::random<int>(0,int(size-1)); A.prune(prune_column(col)); solver.compute(A); VERIFY_IS_EQUAL(solver.info(), NumericalIssue); @@ -346,17 +443,33 @@ template<typename Solver> void check_sparse_square_solving(Solver& solver, bool // First, get the folder #ifdef TEST_REAL_CASES - if (internal::is_same<Scalar, float>::value - || internal::is_same<Scalar, std::complex<float> >::value) - return ; - - std::string mat_folder = get_matrixfolder<Scalar>(); - MatrixMarketIterator<Scalar> it(mat_folder); - for (; it; ++it) + // Test real problems with double precision only + if (internal::is_same<typename NumTraits<Scalar>::Real, double>::value) { - std::cout<< " ==== SOLVING WITH MATRIX " << it.matname() << " ==== \n"; - check_sparse_solving_real_cases(solver, it.matrix(), it.rhs(), it.refX()); + std::string mat_folder = get_matrixfolder<Scalar>(); + MatrixMarketIterator<Scalar> it(mat_folder); + for (; it; ++it) + { + A = it.matrix(); + if(A.diagonal().size() <= maxRealWorldSize) + { + DenseVector b = it.rhs(); + DenseVector refX = it.refX(); + std::cout << "INFO | Testing " << sym_to_string(it.sym()) << "sparse problem " << it.matname() + << " (" << A.rows() << "x" << A.cols() << ") using " << typeid(Solver).name() << "..." << std::endl; + CALL_SUBTEST(check_sparse_solving_real_cases(solver, A, b, A, refX)); + std::string stats = solver_stats(solver); + if(stats.size()>0) + std::cout << "INFO | " << stats << std::endl; + } + else + { + std::cout << "INFO | SKIP sparse problem \"" << it.matname() << "\" (too large)" << std::endl; + } + } } +#else + EIGEN_UNUSED_VARIABLE(maxRealWorldSize); #endif } @@ -366,13 +479,20 @@ template<typename Solver> void check_sparse_square_determinant(Solver& solver) typedef typename Solver::MatrixType Mat; typedef typename Mat::Scalar Scalar; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; - - // generate the problem - Mat A; - DenseMatrix dA; - generate_sparse_square_problem(solver, A, dA, 30); - A.makeCompressed(); + for (int i = 0; i < g_repeat; i++) { + // generate the problem + Mat A; + DenseMatrix dA; + + int size = internal::random<int>(1,30); + dA.setRandom(size,size); + + dA = (dA.array().abs()<0.3).select(0,dA); + dA.diagonal() = (dA.diagonal().array()==0).select(1,dA.diagonal()); + A = dA.sparseView(); + A.makeCompressed(); + check_sparse_determinant(solver, A, dA); } } @@ -383,13 +503,63 @@ template<typename Solver> void check_sparse_square_abs_determinant(Solver& solve typedef typename Mat::Scalar Scalar; typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; - // generate the problem - Mat A; - DenseMatrix dA; - generate_sparse_square_problem(solver, A, dA, 30); - A.makeCompressed(); for (int i = 0; i < g_repeat; i++) { + // generate the problem + Mat A; + DenseMatrix dA; + generate_sparse_square_problem(solver, A, dA, 30); + A.makeCompressed(); check_sparse_abs_determinant(solver, A, dA); } } +template<typename Solver, typename DenseMat> +void generate_sparse_leastsquare_problem(Solver&, typename Solver::MatrixType& A, DenseMat& dA, int maxSize = 300, int options = ForceNonZeroDiag) +{ + typedef typename Solver::MatrixType Mat; + typedef typename Mat::Scalar Scalar; + + int rows = internal::random<int>(1,maxSize); + int cols = internal::random<int>(1,rows); + double density = (std::max)(8./(rows*cols), 0.01); + + A.resize(rows,cols); + dA.resize(rows,cols); + + initSparse<Scalar>(density, dA, A, options); +} + +template<typename Solver> void check_sparse_leastsquare_solving(Solver& solver) +{ + typedef typename Solver::MatrixType Mat; + typedef typename Mat::Scalar Scalar; + typedef SparseMatrix<Scalar,ColMajor, typename Mat::StorageIndex> SpMat; + typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix; + typedef Matrix<Scalar,Dynamic,1> DenseVector; + + int rhsCols = internal::random<int>(1,16); + + Mat A; + DenseMatrix dA; + for (int i = 0; i < g_repeat; i++) { + generate_sparse_leastsquare_problem(solver, A, dA); + + A.makeCompressed(); + DenseVector b = DenseVector::Random(A.rows()); + DenseMatrix dB(A.rows(),rhsCols); + SpMat B(A.rows(),rhsCols); + double density = (std::max)(8./(A.rows()*rhsCols), 0.1); + initSparse<Scalar>(density, dB, B, ForceNonZeroDiag); + B.makeCompressed(); + check_sparse_solving(solver, A, b, dA, b); + check_sparse_solving(solver, A, dB, dA, dB); + check_sparse_solving(solver, A, B, dA, dB); + + // check only once + if(i==0) + { + b = DenseVector::Zero(A.rows()); + check_sparse_solving(solver, A, b, dA, b); + } + } +} |