diff options
Diffstat (limited to 'eigen/test/svd_fill.h')
-rw-r--r-- | eigen/test/svd_fill.h | 119 |
1 files changed, 119 insertions, 0 deletions
diff --git a/eigen/test/svd_fill.h b/eigen/test/svd_fill.h new file mode 100644 index 0000000..3877c0c --- /dev/null +++ b/eigen/test/svd_fill.h @@ -0,0 +1,119 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2014-2015 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +template<typename T> +Array<T,4,1> four_denorms(); + +template<> +Array4f four_denorms() { return Array4f(5.60844e-39f, -5.60844e-39f, 4.94e-44f, -4.94e-44f); } +template<> +Array4d four_denorms() { return Array4d(5.60844e-313, -5.60844e-313, 4.94e-324, -4.94e-324); } +template<typename T> +Array<T,4,1> four_denorms() { return four_denorms<double>().cast<T>(); } + +template<typename MatrixType> +void svd_fill_random(MatrixType &m, int Option = 0) +{ + using std::pow; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + Index diagSize = (std::min)(m.rows(), m.cols()); + RealScalar s = std::numeric_limits<RealScalar>::max_exponent10/4; + s = internal::random<RealScalar>(1,s); + Matrix<RealScalar,Dynamic,1> d = Matrix<RealScalar,Dynamic,1>::Random(diagSize); + for(Index k=0; k<diagSize; ++k) + d(k) = d(k)*pow(RealScalar(10),internal::random<RealScalar>(-s,s)); + + bool dup = internal::random<int>(0,10) < 3; + bool unit_uv = internal::random<int>(0,10) < (dup?7:3); // if we duplicate some diagonal entries, then increase the chance to preserve them using unitary U and V factors + + // duplicate some singular values + if(dup) + { + Index n = internal::random<Index>(0,d.size()-1); + for(Index i=0; i<n; ++i) + d(internal::random<Index>(0,d.size()-1)) = d(internal::random<Index>(0,d.size()-1)); + } + + Matrix<Scalar,Dynamic,Dynamic> U(m.rows(),diagSize); + Matrix<Scalar,Dynamic,Dynamic> VT(diagSize,m.cols()); + if(unit_uv) + { + // in very rare cases let's try with a pure diagonal matrix + if(internal::random<int>(0,10) < 1) + { + U.setIdentity(); + VT.setIdentity(); + } + else + { + createRandomPIMatrixOfRank(diagSize,U.rows(), U.cols(), U); + createRandomPIMatrixOfRank(diagSize,VT.rows(), VT.cols(), VT); + } + } + else + { + U.setRandom(); + VT.setRandom(); + } + + Matrix<Scalar,Dynamic,1> samples(9); + samples << 0, four_denorms<RealScalar>(), + -RealScalar(1)/NumTraits<RealScalar>::highest(), RealScalar(1)/NumTraits<RealScalar>::highest(), (std::numeric_limits<RealScalar>::min)(), pow((std::numeric_limits<RealScalar>::min)(),0.8); + + if(Option==Symmetric) + { + m = U * d.asDiagonal() * U.transpose(); + + // randomly nullify some rows/columns + { + Index count = internal::random<Index>(-diagSize,diagSize); + for(Index k=0; k<count; ++k) + { + Index i = internal::random<Index>(0,diagSize-1); + m.row(i).setZero(); + m.col(i).setZero(); + } + if(count<0) + // (partly) cancel some coeffs + if(!(dup && unit_uv)) + { + + Index n = internal::random<Index>(0,m.size()-1); + for(Index k=0; k<n; ++k) + { + Index i = internal::random<Index>(0,m.rows()-1); + Index j = internal::random<Index>(0,m.cols()-1); + m(j,i) = m(i,j) = samples(internal::random<Index>(0,samples.size()-1)); + if(NumTraits<Scalar>::IsComplex) + *(&numext::real_ref(m(j,i))+1) = *(&numext::real_ref(m(i,j))+1) = samples.real()(internal::random<Index>(0,samples.size()-1)); + } + } + } + } + else + { + m = U * d.asDiagonal() * VT; + // (partly) cancel some coeffs + if(!(dup && unit_uv)) + { + Index n = internal::random<Index>(0,m.size()-1); + for(Index k=0; k<n; ++k) + { + Index i = internal::random<Index>(0,m.rows()-1); + Index j = internal::random<Index>(0,m.cols()-1); + m(i,j) = samples(internal::random<Index>(0,samples.size()-1)); + if(NumTraits<Scalar>::IsComplex) + *(&numext::real_ref(m(i,j))+1) = samples.real()(internal::random<Index>(0,samples.size()-1)); + } + } + } +} + |