summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h')
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h355
1 files changed, 355 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
new file mode 100644
index 0000000..a5d034d
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -0,0 +1,355 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERANGLESCLASS_H// TODO: Fix previous "EIGEN_EULERANGLES_H" definition?
+#define EIGEN_EULERANGLESCLASS_H
+
+namespace Eigen
+{
+ /** \class EulerAngles
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * \brief Represents a rotation in a 3 dimensional space as three Euler angles.
+ *
+ * Euler rotation is a set of three rotation of three angles over three fixed axes, defined by the EulerSystem given as a template parameter.
+ *
+ * Here is how intrinsic Euler angles works:
+ * - first, rotate the axes system over the alpha axis in angle alpha
+ * - then, rotate the axes system over the beta axis(which was rotated in the first stage) in angle beta
+ * - then, rotate the axes system over the gamma axis(which was rotated in the two stages above) in angle gamma
+ *
+ * \note This class support only intrinsic Euler angles for simplicity,
+ * see EulerSystem how to easily overcome this for extrinsic systems.
+ *
+ * ### Rotation representation and conversions ###
+ *
+ * It has been proved(see Wikipedia link below) that every rotation can be represented
+ * by Euler angles, but there is no single representation (e.g. unlike rotation matrices).
+ * Therefore, you can convert from Eigen rotation and to them
+ * (including rotation matrices, which is not called "rotations" by Eigen design).
+ *
+ * Euler angles usually used for:
+ * - convenient human representation of rotation, especially in interactive GUI.
+ * - gimbal systems and robotics
+ * - efficient encoding(i.e. 3 floats only) of rotation for network protocols.
+ *
+ * However, Euler angles are slow comparing to quaternion or matrices,
+ * because their unnatural math definition, although it's simple for human.
+ * To overcome this, this class provide easy movement from the math friendly representation
+ * to the human friendly representation, and vise-versa.
+ *
+ * All the user need to do is a safe simple C++ type conversion,
+ * and this class take care for the math.
+ * Additionally, some axes related computation is done in compile time.
+ *
+ * #### Euler angles ranges in conversions ####
+ * Rotations representation as EulerAngles are not single (unlike matrices),
+ * and even have infinite EulerAngles representations.<BR>
+ * For example, add or subtract 2*PI from either angle of EulerAngles
+ * and you'll get the same rotation.
+ * This is the general reason for infinite representation,
+ * but it's not the only general reason for not having a single representation.
+ *
+ * When converting rotation to EulerAngles, this class convert it to specific ranges
+ * When converting some rotation to EulerAngles, the rules for ranges are as follow:
+ * - If the rotation we converting from is an EulerAngles
+ * (even when it represented as RotationBase explicitly), angles ranges are __undefined__.
+ * - otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ *
+ * \sa EulerAngles(const MatrixBase<Derived>&)
+ * \sa EulerAngles(const RotationBase<Derived, 3>&)
+ *
+ * ### Convenient user typedefs ###
+ *
+ * Convenient typedefs for EulerAngles exist for float and double scalar,
+ * in a form of EulerAngles{A}{B}{C}{scalar},
+ * e.g. \ref EulerAnglesXYZd, \ref EulerAnglesZYZf.
+ *
+ * Only for positive axes{+x,+y,+z} Euler systems are have convenient typedef.
+ * If you need negative axes{-x,-y,-z}, it is recommended to create you own typedef with
+ * a word that represent what you need.
+ *
+ * ### Example ###
+ *
+ * \include EulerAngles.cpp
+ * Output: \verbinclude EulerAngles.out
+ *
+ * ### Additional reading ###
+ *
+ * If you're want to get more idea about how Euler system work in Eigen see EulerSystem.
+ *
+ * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+ *
+ * \tparam _Scalar the scalar type, i.e. the type of the angles.
+ *
+ * \tparam _System the EulerSystem to use, which represents the axes of rotation.
+ */
+ template <typename _Scalar, class _System>
+ class EulerAngles : public RotationBase<EulerAngles<_Scalar, _System>, 3>
+ {
+ public:
+ typedef RotationBase<EulerAngles<_Scalar, _System>, 3> Base;
+
+ /** the scalar type of the angles */
+ typedef _Scalar Scalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** the EulerSystem to use, which represents the axes of rotation. */
+ typedef _System System;
+
+ typedef Matrix<Scalar,3,3> Matrix3; /*!< the equivalent rotation matrix type */
+ typedef Matrix<Scalar,3,1> Vector3; /*!< the equivalent 3 dimension vector type */
+ typedef Quaternion<Scalar> QuaternionType; /*!< the equivalent quaternion type */
+ typedef AngleAxis<Scalar> AngleAxisType; /*!< the equivalent angle-axis type */
+
+ /** \returns the axis vector of the first (alpha) rotation */
+ static Vector3 AlphaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::AlphaAxisAbs - 1);
+ return System::IsAlphaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the second (beta) rotation */
+ static Vector3 BetaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::BetaAxisAbs - 1);
+ return System::IsBetaOpposite ? -u : u;
+ }
+
+ /** \returns the axis vector of the third (gamma) rotation */
+ static Vector3 GammaAxisVector() {
+ const Vector3& u = Vector3::Unit(System::GammaAxisAbs - 1);
+ return System::IsGammaOpposite ? -u : u;
+ }
+
+ private:
+ Vector3 m_angles;
+
+ public:
+ /** Default constructor without initialization. */
+ EulerAngles() {}
+ /** Constructs and initialize an EulerAngles (\p alpha, \p beta, \p gamma). */
+ EulerAngles(const Scalar& alpha, const Scalar& beta, const Scalar& gamma) :
+ m_angles(alpha, beta, gamma) {}
+
+ // TODO: Test this constructor
+ /** Constructs and initialize an EulerAngles from the array data {alpha, beta, gamma} */
+ explicit EulerAngles(const Scalar* data) : m_angles(data) {}
+
+ /** Constructs and initializes an EulerAngles from either:
+ * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
+ * - a 3D vector expression representing Euler angles.
+ *
+ * \note If \p other is a 3x3 rotation matrix, the angles range rules will be as follow:<BR>
+ * Alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ */
+ template<typename Derived>
+ explicit EulerAngles(const MatrixBase<Derived>& other) { *this = other; }
+
+ /** Constructs and initialize Euler angles from a rotation \p rot.
+ *
+ * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly),
+ * angles ranges are __undefined__.
+ * Otherwise, alpha and gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI/2, PI/2].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-PI, 0]
+ */
+ template<typename Derived>
+ EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); }
+
+ /*EulerAngles(const QuaternionType& q)
+ {
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
+
+ /** \returns The angle values stored in a vector (alpha, beta, gamma). */
+ const Vector3& angles() const { return m_angles; }
+ /** \returns A read-write reference to the angle values stored in a vector (alpha, beta, gamma). */
+ Vector3& angles() { return m_angles; }
+
+ /** \returns The value of the first angle. */
+ Scalar alpha() const { return m_angles[0]; }
+ /** \returns A read-write reference to the angle of the first angle. */
+ Scalar& alpha() { return m_angles[0]; }
+
+ /** \returns The value of the second angle. */
+ Scalar beta() const { return m_angles[1]; }
+ /** \returns A read-write reference to the angle of the second angle. */
+ Scalar& beta() { return m_angles[1]; }
+
+ /** \returns The value of the third angle. */
+ Scalar gamma() const { return m_angles[2]; }
+ /** \returns A read-write reference to the angle of the third angle. */
+ Scalar& gamma() { return m_angles[2]; }
+
+ /** \returns The Euler angles rotation inverse (which is as same as the negative),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles inverse() const
+ {
+ EulerAngles res;
+ res.m_angles = -m_angles;
+ return res;
+ }
+
+ /** \returns The Euler angles rotation negative (which is as same as the inverse),
+ * (-alpha, -beta, -gamma).
+ */
+ EulerAngles operator -() const
+ {
+ return inverse();
+ }
+
+ /** Set \c *this from either:
+ * - a 3x3 rotation matrix expression(i.e. pure orthogonal matrix with determinant of +1),
+ * - a 3D vector expression representing Euler angles.
+ *
+ * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about
+ * angles ranges output.
+ */
+ template<class Derived>
+ EulerAngles& operator=(const MatrixBase<Derived>& other)
+ {
+ EIGEN_STATIC_ASSERT((internal::is_same<Scalar, typename Derived::Scalar>::value),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+
+ internal::eulerangles_assign_impl<System, Derived>::run(*this, other.derived());
+ return *this;
+ }
+
+ // TODO: Assign and construct from another EulerAngles (with different system)
+
+ /** Set \c *this from a rotation.
+ *
+ * See EulerAngles(const RotationBase<Derived, 3>&) for more information about
+ * angles ranges output.
+ */
+ template<typename Derived>
+ EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
+ System::CalcEulerAngles(*this, rot.toRotationMatrix());
+ return *this;
+ }
+
+ /** \returns \c true if \c *this is approximately equal to \a other, within the precision
+ * determined by \a prec.
+ *
+ * \sa MatrixBase::isApprox() */
+ bool isApprox(const EulerAngles& other,
+ const RealScalar& prec = NumTraits<Scalar>::dummy_precision()) const
+ { return angles().isApprox(other.angles(), prec); }
+
+ /** \returns an equivalent 3x3 rotation matrix. */
+ Matrix3 toRotationMatrix() const
+ {
+ // TODO: Calc it faster
+ return static_cast<QuaternionType>(*this).toRotationMatrix();
+ }
+
+ /** Convert the Euler angles to quaternion. */
+ operator QuaternionType() const
+ {
+ return
+ AngleAxisType(alpha(), AlphaAxisVector()) *
+ AngleAxisType(beta(), BetaAxisVector()) *
+ AngleAxisType(gamma(), GammaAxisVector());
+ }
+
+ friend std::ostream& operator<<(std::ostream& s, const EulerAngles<Scalar, System>& eulerAngles)
+ {
+ s << eulerAngles.angles().transpose();
+ return s;
+ }
+
+ /** \returns \c *this with scalar type casted to \a NewScalarType */
+ template <typename NewScalarType>
+ EulerAngles<NewScalarType, System> cast() const
+ {
+ EulerAngles<NewScalarType, System> e;
+ e.angles() = angles().template cast<NewScalarType>();
+ return e;
+ }
+ };
+
+#define EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(AXES, SCALAR_TYPE, SCALAR_POSTFIX) \
+ /** \ingroup EulerAngles_Module */ \
+ typedef EulerAngles<SCALAR_TYPE, EulerSystem##AXES> EulerAngles##AXES##SCALAR_POSTFIX;
+
+#define EIGEN_EULER_ANGLES_TYPEDEFS(SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(XZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YZY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(YXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXY, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZXZ, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYX, SCALAR_TYPE, SCALAR_POSTFIX) \
+ EIGEN_EULER_ANGLES_SINGLE_TYPEDEF(ZYZ, SCALAR_TYPE, SCALAR_POSTFIX)
+
+EIGEN_EULER_ANGLES_TYPEDEFS(float, f)
+EIGEN_EULER_ANGLES_TYPEDEFS(double, d)
+
+ namespace internal
+ {
+ template<typename _Scalar, class _System>
+ struct traits<EulerAngles<_Scalar, _System> >
+ {
+ typedef _Scalar Scalar;
+ };
+
+ // set from a rotation matrix
+ template<class System, class Other>
+ struct eulerangles_assign_impl<System,Other,3,3>
+ {
+ typedef typename Other::Scalar Scalar;
+ static void run(EulerAngles<Scalar, System>& e, const Other& m)
+ {
+ System::CalcEulerAngles(e, m);
+ }
+ };
+
+ // set from a vector of Euler angles
+ template<class System, class Other>
+ struct eulerangles_assign_impl<System,Other,4,1>
+ {
+ typedef typename Other::Scalar Scalar;
+ static void run(EulerAngles<Scalar, System>& e, const Other& vec)
+ {
+ e.angles() = vec;
+ }
+ };
+ }
+}
+
+#endif // EIGEN_EULERANGLESCLASS_H