summaryrefslogtreecommitdiffhomepage
path: root/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h')
-rw-r--r--eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h306
1 files changed, 306 insertions, 0 deletions
diff --git a/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
new file mode 100644
index 0000000..28f52da
--- /dev/null
+++ b/eigen/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -0,0 +1,306 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Tal Hadad <tal_hd@hotmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_EULERSYSTEM_H
+#define EIGEN_EULERSYSTEM_H
+
+namespace Eigen
+{
+ // Forward declerations
+ template <typename _Scalar, class _System>
+ class EulerAngles;
+
+ namespace internal
+ {
+ // TODO: Add this trait to the Eigen internal API?
+ template <int Num, bool IsPositive = (Num > 0)>
+ struct Abs
+ {
+ enum { value = Num };
+ };
+
+ template <int Num>
+ struct Abs<Num, false>
+ {
+ enum { value = -Num };
+ };
+
+ template <int Axis>
+ struct IsValidAxis
+ {
+ enum { value = Axis != 0 && Abs<Axis>::value <= 3 };
+ };
+
+ template<typename System,
+ typename Other,
+ int OtherRows=Other::RowsAtCompileTime,
+ int OtherCols=Other::ColsAtCompileTime>
+ struct eulerangles_assign_impl;
+ }
+
+ #define EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(COND,MSG) typedef char static_assertion_##MSG[(COND)?1:-1]
+
+ /** \brief Representation of a fixed signed rotation axis for EulerSystem.
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * Values here represent:
+ * - The axis of the rotation: X, Y or Z.
+ * - The sign (i.e. direction of the rotation along the axis): positive(+) or negative(-)
+ *
+ * Therefore, this could express all the axes {+X,+Y,+Z,-X,-Y,-Z}
+ *
+ * For positive axis, use +EULER_{axis}, and for negative axis use -EULER_{axis}.
+ */
+ enum EulerAxis
+ {
+ EULER_X = 1, /*!< the X axis */
+ EULER_Y = 2, /*!< the Y axis */
+ EULER_Z = 3 /*!< the Z axis */
+ };
+
+ /** \class EulerSystem
+ *
+ * \ingroup EulerAngles_Module
+ *
+ * \brief Represents a fixed Euler rotation system.
+ *
+ * This meta-class goal is to represent the Euler system in compilation time, for EulerAngles.
+ *
+ * You can use this class to get two things:
+ * - Build an Euler system, and then pass it as a template parameter to EulerAngles.
+ * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
+ *
+ * Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
+ * This meta-class store constantly those signed axes. (see \ref EulerAxis)
+ *
+ * ### Types of Euler systems ###
+ *
+ * All and only valid 3 dimension Euler rotation over standard
+ * signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
+ * - all axes X, Y, Z in each valid order (see below what order is valid)
+ * - rotation over the axis is supported both over the positive and negative directions.
+ * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
+ *
+ * Since EulerSystem support both positive and negative directions,
+ * you may call this rotation distinction in other names:
+ * - _right handed_ or _left handed_
+ * - _counterclockwise_ or _clockwise_
+ *
+ * Notice all axed combination are valid, and would trigger a static assertion.
+ * Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
+ * This yield two and only two classes:
+ * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
+ * and the second is different, e.g. {X,Y,X}
+ *
+ * ### Intrinsic vs extrinsic Euler systems ###
+ *
+ * Only intrinsic Euler systems are supported for simplicity.
+ * If you want to use extrinsic Euler systems,
+ * just use the equal intrinsic opposite order for axes and angles.
+ * I.e axes (A,B,C) becomes (C,B,A), and angles (a,b,c) becomes (c,b,a).
+ *
+ * ### Convenient user typedefs ###
+ *
+ * Convenient typedefs for EulerSystem exist (only for positive axes Euler systems),
+ * in a form of EulerSystem{A}{B}{C}, e.g. \ref EulerSystemXYZ.
+ *
+ * ### Additional reading ###
+ *
+ * More information about Euler angles: https://en.wikipedia.org/wiki/Euler_angles
+ *
+ * \tparam _AlphaAxis the first fixed EulerAxis
+ *
+ * \tparam _BetaAxis the second fixed EulerAxis
+ *
+ * \tparam _GammaAxis the third fixed EulerAxis
+ */
+ template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
+ class EulerSystem
+ {
+ public:
+ // It's defined this way and not as enum, because I think
+ // that enum is not guerantee to support negative numbers
+
+ /** The first rotation axis */
+ static const int AlphaAxis = _AlphaAxis;
+
+ /** The second rotation axis */
+ static const int BetaAxis = _BetaAxis;
+
+ /** The third rotation axis */
+ static const int GammaAxis = _GammaAxis;
+
+ enum
+ {
+ AlphaAxisAbs = internal::Abs<AlphaAxis>::value, /*!< the first rotation axis unsigned */
+ BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
+ GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
+
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
+
+ // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
+ // by Z, or Z is followed by X; otherwise it is odd.
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
+
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
+ };
+
+ private:
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<AlphaAxis>::value,
+ ALPHA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<BetaAxis>::value,
+ BETA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT(internal::IsValidAxis<GammaAxis>::value,
+ GAMMA_AXIS_IS_INVALID);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)AlphaAxisAbs != (unsigned)BetaAxisAbs,
+ ALPHA_AXIS_CANT_BE_EQUAL_TO_BETA_AXIS);
+
+ EIGEN_EULER_ANGLES_CLASS_STATIC_ASSERT((unsigned)BetaAxisAbs != (unsigned)GammaAxisAbs,
+ BETA_AXIS_CANT_BE_EQUAL_TO_GAMMA_AXIS);
+
+ enum
+ {
+ // I, J, K are the pivot indexes permutation for the rotation matrix, that match this Euler system.
+ // They are used in this class converters.
+ // They are always different from each other, and their possible values are: 0, 1, or 2.
+ I = AlphaAxisAbs - 1,
+ J = (AlphaAxisAbs - 1 + 1 + IsOdd)%3,
+ K = (AlphaAxisAbs - 1 + 2 - IsOdd)%3
+ };
+
+ // TODO: Get @mat parameter in form that avoids double evaluation.
+ template <typename Derived>
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
+ {
+ using std::atan2;
+ using std::sqrt;
+
+ typedef typename Derived::Scalar Scalar;
+
+ const Scalar plusMinus = IsEven? 1 : -1;
+ const Scalar minusPlus = IsOdd? 1 : -1;
+
+ const Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2);
+ res[1] = atan2(plusMinus * mat(I,K), Rsum);
+
+ // There is a singularity when cos(beta) == 0
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// cos(beta) != 0
+ res[0] = atan2(minusPlus * mat(J, K), mat(K, K));
+ res[2] = atan2(minusPlus * mat(I, J), mat(I, I));
+ }
+ else if(plusMinus * mat(I, K) > 0) {// cos(beta) == 0 and sin(beta) == 1
+ Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma
+ Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma)
+ Scalar alphaPlusMinusGamma = atan2(spos, cpos);
+ res[0] = alphaPlusMinusGamma;
+ res[2] = 0;
+ }
+ else {// cos(beta) == 0 and sin(beta) == -1
+ Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma)
+ Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma)
+ Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
+ res[0] = alphaMinusPlusBeta;
+ res[2] = 0;
+ }
+ }
+
+ template <typename Derived>
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
+ const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ {
+ using std::atan2;
+ using std::sqrt;
+
+ typedef typename Derived::Scalar Scalar;
+
+ const Scalar plusMinus = IsEven? 1 : -1;
+ const Scalar minusPlus = IsOdd? 1 : -1;
+
+ const Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2);
+
+ res[1] = atan2(Rsum, mat(I, I));
+
+ // There is a singularity when sin(beta) == 0
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {// sin(beta) != 0
+ res[0] = atan2(mat(J, I), minusPlus * mat(K, I));
+ res[2] = atan2(mat(I, J), plusMinus * mat(I, K));
+ }
+ else if(mat(I, I) > 0) {// sin(beta) == 0 and cos(beta) == 1
+ Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma)
+ Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma)
+ res[0] = atan2(spos, cpos);
+ res[2] = 0;
+ }
+ else {// sin(beta) == 0 and cos(beta) == -1
+ Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma)
+ Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma)
+ res[0] = atan2(sneg, cneg);
+ res[2] = 0;
+ }
+ }
+
+ template<typename Scalar>
+ static void CalcEulerAngles(
+ EulerAngles<Scalar, EulerSystem>& res,
+ const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
+ {
+ CalcEulerAngles_imp(
+ res.angles(), mat,
+ typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
+
+ if (IsAlphaOpposite)
+ res.alpha() = -res.alpha();
+
+ if (IsBetaOpposite)
+ res.beta() = -res.beta();
+
+ if (IsGammaOpposite)
+ res.gamma() = -res.gamma();
+ }
+
+ template <typename _Scalar, class _System>
+ friend class Eigen::EulerAngles;
+
+ template<typename System,
+ typename Other,
+ int OtherRows,
+ int OtherCols>
+ friend struct internal::eulerangles_assign_impl;
+ };
+
+#define EIGEN_EULER_SYSTEM_TYPEDEF(A, B, C) \
+ /** \ingroup EulerAngles_Module */ \
+ typedef EulerSystem<EULER_##A, EULER_##B, EULER_##C> EulerSystem##A##B##C;
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Y,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(X,Z,X)
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,Z,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Y,X,Y)
+
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Y)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,X,Z)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,X)
+ EIGEN_EULER_SYSTEM_TYPEDEF(Z,Y,Z)
+}
+
+#endif // EIGEN_EULERSYSTEM_H