diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h')
-rw-r--r-- | eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h | 507 |
1 files changed, 197 insertions, 310 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h index c744fc0..1acfbed 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h @@ -1,7 +1,7 @@ // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // -// Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> +// Copyright (C) 2011, 2013 Jitse Niesen <jitse@maths.leeds.ac.uk> // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla @@ -11,91 +11,33 @@ #ifndef EIGEN_MATRIX_LOGARITHM #define EIGEN_MATRIX_LOGARITHM -#ifndef M_PI -#define M_PI 3.141592653589793238462643383279503L -#endif - namespace Eigen { -/** \ingroup MatrixFunctions_Module - * \class MatrixLogarithmAtomic - * \brief Helper class for computing matrix logarithm of atomic matrices. - * - * \internal - * Here, an atomic matrix is a triangular matrix whose diagonal - * entries are close to each other. - * - * \sa class MatrixFunctionAtomic, MatrixBase::log() - */ -template <typename MatrixType> -class MatrixLogarithmAtomic -{ -public: - - typedef typename MatrixType::Scalar Scalar; - // typedef typename MatrixType::Index Index; - typedef typename NumTraits<Scalar>::Real RealScalar; - // typedef typename internal::stem_function<Scalar>::type StemFunction; - // typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> VectorType; - - /** \brief Constructor. */ - MatrixLogarithmAtomic() { } - - /** \brief Compute matrix logarithm of atomic matrix - * \param[in] A argument of matrix logarithm, should be upper triangular and atomic - * \returns The logarithm of \p A. - */ - MatrixType compute(const MatrixType& A); - -private: +namespace internal { - void compute2x2(const MatrixType& A, MatrixType& result); - void computeBig(const MatrixType& A, MatrixType& result); - int getPadeDegree(float normTminusI); - int getPadeDegree(double normTminusI); - int getPadeDegree(long double normTminusI); - void computePade(MatrixType& result, const MatrixType& T, int degree); - void computePade3(MatrixType& result, const MatrixType& T); - void computePade4(MatrixType& result, const MatrixType& T); - void computePade5(MatrixType& result, const MatrixType& T); - void computePade6(MatrixType& result, const MatrixType& T); - void computePade7(MatrixType& result, const MatrixType& T); - void computePade8(MatrixType& result, const MatrixType& T); - void computePade9(MatrixType& result, const MatrixType& T); - void computePade10(MatrixType& result, const MatrixType& T); - void computePade11(MatrixType& result, const MatrixType& T); - - static const int minPadeDegree = 3; - static const int maxPadeDegree = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision - std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision - std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision - std::numeric_limits<RealScalar>::digits<=106? 10: // double-double - 11; // quadruple precision - - // Prevent copying - MatrixLogarithmAtomic(const MatrixLogarithmAtomic&); - MatrixLogarithmAtomic& operator=(const MatrixLogarithmAtomic&); +template <typename Scalar> +struct matrix_log_min_pade_degree +{ + static const int value = 3; }; -/** \brief Compute logarithm of triangular matrix with clustered eigenvalues. */ -template <typename MatrixType> -MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) +template <typename Scalar> +struct matrix_log_max_pade_degree { - using std::log; - MatrixType result(A.rows(), A.rows()); - if (A.rows() == 1) - result(0,0) = log(A(0,0)); - else if (A.rows() == 2) - compute2x2(A, result); - else - computeBig(A, result); - return result; -} + typedef typename NumTraits<Scalar>::Real RealScalar; + static const int value = std::numeric_limits<RealScalar>::digits<= 24? 5: // single precision + std::numeric_limits<RealScalar>::digits<= 53? 7: // double precision + std::numeric_limits<RealScalar>::digits<= 64? 8: // extended precision + std::numeric_limits<RealScalar>::digits<=106? 10: // double-double + 11; // quadruple precision +}; /** \brief Compute logarithm of 2x2 triangular matrix. */ template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixType& result) +void matrix_log_compute_2x2(const MatrixType& A, MatrixType& result) { + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; using std::abs; using std::ceil; using std::imag; @@ -108,59 +50,31 @@ void MatrixLogarithmAtomic<MatrixType>::compute2x2(const MatrixType& A, MatrixTy result(1,0) = Scalar(0); result(1,1) = logA11; - if (A(0,0) == A(1,1)) { + Scalar y = A(1,1) - A(0,0); + if (y==Scalar(0)) + { result(0,1) = A(0,1) / A(0,0); - } else if ((abs(A(0,0)) < 0.5*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) { - result(0,1) = A(0,1) * (logA11 - logA00) / (A(1,1) - A(0,0)); - } else { - // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) - int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - M_PI) / (2*M_PI))); - Scalar y = A(1,1) - A(0,0), x = A(1,1) + A(0,0); - result(0,1) = A(0,1) * (Scalar(2) * numext::atanh2(y,x) + Scalar(0,2*M_PI*unwindingNumber)) / y; } -} - -/** \brief Compute logarithm of triangular matrices with size > 2. - * \details This uses a inverse scale-and-square algorithm. */ -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixType& result) -{ - using std::pow; - int numberOfSquareRoots = 0; - int numberOfExtraSquareRoots = 0; - int degree; - MatrixType T = A, sqrtT; - const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1: // single precision - maxPadeDegree<= 7? 2.6429608311114350e-1: // double precision - maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision - maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double - 1.1880960220216759245467951592883642e-1L; // quadruple precision - - while (true) { - RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff(); - if (normTminusI < maxNormForPade) { - degree = getPadeDegree(normTminusI); - int degree2 = getPadeDegree(normTminusI / RealScalar(2)); - if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) - break; - ++numberOfExtraSquareRoots; - } - MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT); - T = sqrtT.template triangularView<Upper>(); - ++numberOfSquareRoots; + else if ((abs(A(0,0)) < RealScalar(0.5)*abs(A(1,1))) || (abs(A(0,0)) > 2*abs(A(1,1)))) + { + result(0,1) = A(0,1) * (logA11 - logA00) / y; + } + else + { + // computation in previous branch is inaccurate if A(1,1) \approx A(0,0) + int unwindingNumber = static_cast<int>(ceil((imag(logA11 - logA00) - RealScalar(EIGEN_PI)) / RealScalar(2*EIGEN_PI))); + result(0,1) = A(0,1) * (numext::log1p(y/A(0,0)) + Scalar(0,2*EIGEN_PI*unwindingNumber)) / y; } - - computePade(result, T, degree); - result *= pow(RealScalar(2), numberOfSquareRoots); } /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = float) */ -template <typename MatrixType> -int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI) +inline int matrix_log_get_pade_degree(float normTminusI) { const float maxNormForPade[] = { 2.5111573934555054e-1 /* degree = 3 */ , 4.0535837411880493e-1, 5.3149729967117310e-1 }; - int degree = 3; + const int minPadeDegree = matrix_log_min_pade_degree<float>::value; + const int maxPadeDegree = matrix_log_max_pade_degree<float>::value; + int degree = minPadeDegree; for (; degree <= maxPadeDegree; ++degree) if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break; @@ -168,12 +82,13 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(float normTminusI) } /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = double) */ -template <typename MatrixType> -int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI) +inline int matrix_log_get_pade_degree(double normTminusI) { const double maxNormForPade[] = { 1.6206284795015624e-2 /* degree = 3 */ , 5.3873532631381171e-2, 1.1352802267628681e-1, 1.8662860613541288e-1, 2.642960831111435e-1 }; - int degree = 3; + const int minPadeDegree = matrix_log_min_pade_degree<double>::value; + const int maxPadeDegree = matrix_log_max_pade_degree<double>::value; + int degree = minPadeDegree; for (; degree <= maxPadeDegree; ++degree) if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break; @@ -181,8 +96,7 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(double normTminusI) } /* \brief Get suitable degree for Pade approximation. (specialized for RealScalar = long double) */ -template <typename MatrixType> -int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI) +inline int matrix_log_get_pade_degree(long double normTminusI) { #if LDBL_MANT_DIG == 53 // double precision const long double maxNormForPade[] = { 1.6206284795015624e-2L /* degree = 3 */ , 5.3873532631381171e-2L, @@ -204,7 +118,9 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI) 3.6688019729653446926585242192447447e-2L, 5.9290962294020186998954055264528393e-2L, 8.6998436081634343903250580992127677e-2L, 1.1880960220216759245467951592883642e-1L }; #endif - int degree = 3; + const int minPadeDegree = matrix_log_min_pade_degree<long double>::value; + const int maxPadeDegree = matrix_log_max_pade_degree<long double>::value; + int degree = minPadeDegree; for (; degree <= maxPadeDegree; ++degree) if (normTminusI <= maxNormForPade[degree - minPadeDegree]) break; @@ -213,197 +129,168 @@ int MatrixLogarithmAtomic<MatrixType>::getPadeDegree(long double normTminusI) /* \brief Compute Pade approximation to matrix logarithm */ template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade(MatrixType& result, const MatrixType& T, int degree) +void matrix_log_compute_pade(MatrixType& result, const MatrixType& T, int degree) { - switch (degree) { - case 3: computePade3(result, T); break; - case 4: computePade4(result, T); break; - case 5: computePade5(result, T); break; - case 6: computePade6(result, T); break; - case 7: computePade7(result, T); break; - case 8: computePade8(result, T); break; - case 9: computePade9(result, T); break; - case 10: computePade10(result, T); break; - case 11: computePade11(result, T); break; - default: assert(false); // should never happen - } -} + typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; + const int minPadeDegree = 3; + const int maxPadeDegree = 11; + assert(degree >= minPadeDegree && degree <= maxPadeDegree); + + const RealScalar nodes[][maxPadeDegree] = { + { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, // degree 3 + 0.8872983346207416885179265399782400L }, + { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, // degree 4 + 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L }, + { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, // degree 5 + 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L, + 0.9530899229693319963988134391496965L }, + { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, // degree 6 + 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, + 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }, + { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, // degree 7 + 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L, + 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L, + 0.9745539561713792622630948420239256L }, + { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, // degree 8 + 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L, + 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L, + 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L }, + { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, // degree 9 + 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L, + 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L, + 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L, + 0.9840801197538130449177881014518364L }, + { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, // degree 10 + 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L, + 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L, + 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L, + 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L }, + { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, // degree 11 + 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L, + 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L, + 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L, + 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L, + 0.9891143290730284964019690005614287L } }; + + const RealScalar weights[][maxPadeDegree] = { + { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, // degree 3 + 0.2777777777777777777777777777777778L }, + { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, // degree 4 + 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L }, + { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, // degree 5 + 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L, + 0.1184634425280945437571320203599587L }, + { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, // degree 6 + 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, + 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }, + { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, // degree 7 + 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L, + 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L, + 0.0647424830844348466353057163395410L }, + { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, // degree 8 + 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L, + 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L, + 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L }, + { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, // degree 9 + 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L, + 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L, + 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L, + 0.0406371941807872059859460790552618L }, + { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, // degree 10 + 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L, + 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L, + 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L, + 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L }, + { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, // degree 11 + 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L, + 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L, + 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L, + 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L, + 0.0278342835580868332413768602212743L } }; -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade3(MatrixType& result, const MatrixType& T) -{ - const int degree = 3; - const RealScalar nodes[] = { 0.1127016653792583114820734600217600L, 0.5000000000000000000000000000000000L, - 0.8872983346207416885179265399782400L }; - const RealScalar weights[] = { 0.2777777777777777777777777777777778L, 0.4444444444444444444444444444444444L, - 0.2777777777777777777777777777777778L }; - eigen_assert(degree <= maxPadeDegree); MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} + for (int k = 0; k < degree; ++k) { + RealScalar weight = weights[degree-minPadeDegree][k]; + RealScalar node = nodes[degree-minPadeDegree][k]; + result += weight * (MatrixType::Identity(T.rows(), T.rows()) + node * TminusI) + .template triangularView<Upper>().solve(TminusI); + } +} +/** \brief Compute logarithm of triangular matrices with size > 2. + * \details This uses a inverse scale-and-square algorithm. */ template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade4(MatrixType& result, const MatrixType& T) +void matrix_log_compute_big(const MatrixType& A, MatrixType& result) { - const int degree = 4; - const RealScalar nodes[] = { 0.0694318442029737123880267555535953L, 0.3300094782075718675986671204483777L, - 0.6699905217924281324013328795516223L, 0.9305681557970262876119732444464048L }; - const RealScalar weights[] = { 0.1739274225687269286865319746109997L, 0.3260725774312730713134680253890003L, - 0.3260725774312730713134680253890003L, 0.1739274225687269286865319746109997L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<Scalar>::Real RealScalar; + using std::pow; -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade5(MatrixType& result, const MatrixType& T) -{ - const int degree = 5; - const RealScalar nodes[] = { 0.0469100770306680036011865608503035L, 0.2307653449471584544818427896498956L, - 0.5000000000000000000000000000000000L, 0.7692346550528415455181572103501044L, - 0.9530899229693319963988134391496965L }; - const RealScalar weights[] = { 0.1184634425280945437571320203599587L, 0.2393143352496832340206457574178191L, - 0.2844444444444444444444444444444444L, 0.2393143352496832340206457574178191L, - 0.1184634425280945437571320203599587L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} + int numberOfSquareRoots = 0; + int numberOfExtraSquareRoots = 0; + int degree; + MatrixType T = A, sqrtT; -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade6(MatrixType& result, const MatrixType& T) -{ - const int degree = 6; - const RealScalar nodes[] = { 0.0337652428984239860938492227530027L, 0.1693953067668677431693002024900473L, - 0.3806904069584015456847491391596440L, 0.6193095930415984543152508608403560L, - 0.8306046932331322568306997975099527L, 0.9662347571015760139061507772469973L }; - const RealScalar weights[] = { 0.0856622461895851725201480710863665L, 0.1803807865240693037849167569188581L, - 0.2339569672863455236949351719947755L, 0.2339569672863455236949351719947755L, - 0.1803807865240693037849167569188581L, 0.0856622461895851725201480710863665L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} + int maxPadeDegree = matrix_log_max_pade_degree<Scalar>::value; + const RealScalar maxNormForPade = maxPadeDegree<= 5? 5.3149729967117310e-1L: // single precision + maxPadeDegree<= 7? 2.6429608311114350e-1L: // double precision + maxPadeDegree<= 8? 2.32777776523703892094e-1L: // extended precision + maxPadeDegree<=10? 1.05026503471351080481093652651105e-1L: // double-double + 1.1880960220216759245467951592883642e-1L; // quadruple precision -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade7(MatrixType& result, const MatrixType& T) -{ - const int degree = 7; - const RealScalar nodes[] = { 0.0254460438286207377369051579760744L, 0.1292344072003027800680676133596058L, - 0.2970774243113014165466967939615193L, 0.5000000000000000000000000000000000L, - 0.7029225756886985834533032060384807L, 0.8707655927996972199319323866403942L, - 0.9745539561713792622630948420239256L }; - const RealScalar weights[] = { 0.0647424830844348466353057163395410L, 0.1398526957446383339507338857118898L, - 0.1909150252525594724751848877444876L, 0.2089795918367346938775510204081633L, - 0.1909150252525594724751848877444876L, 0.1398526957446383339507338857118898L, - 0.0647424830844348466353057163395410L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} + while (true) { + RealScalar normTminusI = (T - MatrixType::Identity(T.rows(), T.rows())).cwiseAbs().colwise().sum().maxCoeff(); + if (normTminusI < maxNormForPade) { + degree = matrix_log_get_pade_degree(normTminusI); + int degree2 = matrix_log_get_pade_degree(normTminusI / RealScalar(2)); + if ((degree - degree2 <= 1) || (numberOfExtraSquareRoots == 1)) + break; + ++numberOfExtraSquareRoots; + } + matrix_sqrt_triangular(T, sqrtT); + T = sqrtT.template triangularView<Upper>(); + ++numberOfSquareRoots; + } -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade8(MatrixType& result, const MatrixType& T) -{ - const int degree = 8; - const RealScalar nodes[] = { 0.0198550717512318841582195657152635L, 0.1016667612931866302042230317620848L, - 0.2372337950418355070911304754053768L, 0.4082826787521750975302619288199080L, - 0.5917173212478249024697380711800920L, 0.7627662049581644929088695245946232L, - 0.8983332387068133697957769682379152L, 0.9801449282487681158417804342847365L }; - const RealScalar weights[] = { 0.0506142681451881295762656771549811L, 0.1111905172266872352721779972131204L, - 0.1568533229389436436689811009933007L, 0.1813418916891809914825752246385978L, - 0.1813418916891809914825752246385978L, 0.1568533229389436436689811009933007L, - 0.1111905172266872352721779972131204L, 0.0506142681451881295762656771549811L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); + matrix_log_compute_pade(result, T, degree); + result *= pow(RealScalar(2), numberOfSquareRoots); } +/** \ingroup MatrixFunctions_Module + * \class MatrixLogarithmAtomic + * \brief Helper class for computing matrix logarithm of atomic matrices. + * + * Here, an atomic matrix is a triangular matrix whose diagonal entries are close to each other. + * + * \sa class MatrixFunctionAtomic, MatrixBase::log() + */ template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade9(MatrixType& result, const MatrixType& T) +class MatrixLogarithmAtomic { - const int degree = 9; - const RealScalar nodes[] = { 0.0159198802461869550822118985481636L, 0.0819844463366821028502851059651326L, - 0.1933142836497048013456489803292629L, 0.3378732882980955354807309926783317L, - 0.5000000000000000000000000000000000L, 0.6621267117019044645192690073216683L, - 0.8066857163502951986543510196707371L, 0.9180155536633178971497148940348674L, - 0.9840801197538130449177881014518364L }; - const RealScalar weights[] = { 0.0406371941807872059859460790552618L, 0.0903240803474287020292360156214564L, - 0.1303053482014677311593714347093164L, 0.1561735385200014200343152032922218L, - 0.1651196775006298815822625346434870L, 0.1561735385200014200343152032922218L, - 0.1303053482014677311593714347093164L, 0.0903240803474287020292360156214564L, - 0.0406371941807872059859460790552618L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} +public: + /** \brief Compute matrix logarithm of atomic matrix + * \param[in] A argument of matrix logarithm, should be upper triangular and atomic + * \returns The logarithm of \p A. + */ + MatrixType compute(const MatrixType& A); +}; template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade10(MatrixType& result, const MatrixType& T) +MatrixType MatrixLogarithmAtomic<MatrixType>::compute(const MatrixType& A) { - const int degree = 10; - const RealScalar nodes[] = { 0.0130467357414141399610179939577740L, 0.0674683166555077446339516557882535L, - 0.1602952158504877968828363174425632L, 0.2833023029353764046003670284171079L, - 0.4255628305091843945575869994351400L, 0.5744371694908156054424130005648600L, - 0.7166976970646235953996329715828921L, 0.8397047841495122031171636825574368L, - 0.9325316833444922553660483442117465L, 0.9869532642585858600389820060422260L }; - const RealScalar weights[] = { 0.0333356721543440687967844049466659L, 0.0747256745752902965728881698288487L, - 0.1095431812579910219977674671140816L, 0.1346333596549981775456134607847347L, - 0.1477621123573764350869464973256692L, 0.1477621123573764350869464973256692L, - 0.1346333596549981775456134607847347L, 0.1095431812579910219977674671140816L, - 0.0747256745752902965728881698288487L, 0.0333356721543440687967844049466659L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); + using std::log; + MatrixType result(A.rows(), A.rows()); + if (A.rows() == 1) + result(0,0) = log(A(0,0)); + else if (A.rows() == 2) + matrix_log_compute_2x2(A, result); + else + matrix_log_compute_big(A, result); + return result; } -template <typename MatrixType> -void MatrixLogarithmAtomic<MatrixType>::computePade11(MatrixType& result, const MatrixType& T) -{ - const int degree = 11; - const RealScalar nodes[] = { 0.0108856709269715035980309994385713L, 0.0564687001159523504624211153480364L, - 0.1349239972129753379532918739844233L, 0.2404519353965940920371371652706952L, - 0.3652284220238275138342340072995692L, 0.5000000000000000000000000000000000L, - 0.6347715779761724861657659927004308L, 0.7595480646034059079628628347293048L, - 0.8650760027870246620467081260155767L, 0.9435312998840476495375788846519636L, - 0.9891143290730284964019690005614287L }; - const RealScalar weights[] = { 0.0278342835580868332413768602212743L, 0.0627901847324523123173471496119701L, - 0.0931451054638671257130488207158280L, 0.1165968822959952399592618524215876L, - 0.1314022722551233310903444349452546L, 0.1364625433889503153572417641681711L, - 0.1314022722551233310903444349452546L, 0.1165968822959952399592618524215876L, - 0.0931451054638671257130488207158280L, 0.0627901847324523123173471496119701L, - 0.0278342835580868332413768602212743L }; - eigen_assert(degree <= maxPadeDegree); - MatrixType TminusI = T - MatrixType::Identity(T.rows(), T.rows()); - result.setZero(T.rows(), T.rows()); - for (int k = 0; k < degree; ++k) - result += weights[k] * (MatrixType::Identity(T.rows(), T.rows()) + nodes[k] * TminusI) - .template triangularView<Upper>().solve(TminusI); -} +} // end of namespace internal /** \ingroup MatrixFunctions_Module * @@ -421,15 +308,19 @@ template<typename Derived> class MatrixLogarithmReturnValue : public ReturnByValue<MatrixLogarithmReturnValue<Derived> > { public: - typedef typename Derived::Scalar Scalar; typedef typename Derived::Index Index; +protected: + typedef typename internal::ref_selector<Derived>::type DerivedNested; + +public: + /** \brief Constructor. * * \param[in] A %Matrix (expression) forming the argument of the matrix logarithm. */ - MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { } + explicit MatrixLogarithmReturnValue(const Derived& A) : m_A(A) { } /** \brief Compute the matrix logarithm. * @@ -438,28 +329,24 @@ public: template <typename ResultType> inline void evalTo(ResultType& result) const { - typedef typename Derived::PlainObject PlainObject; - typedef internal::traits<PlainObject> Traits; + typedef typename internal::nested_eval<Derived, 10>::type DerivedEvalType; + typedef typename internal::remove_all<DerivedEvalType>::type DerivedEvalTypeClean; + typedef internal::traits<DerivedEvalTypeClean> Traits; static const int RowsAtCompileTime = Traits::RowsAtCompileTime; static const int ColsAtCompileTime = Traits::ColsAtCompileTime; - static const int Options = PlainObject::Options; typedef std::complex<typename NumTraits<Scalar>::Real> ComplexScalar; - typedef Matrix<ComplexScalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; - typedef MatrixLogarithmAtomic<DynMatrixType> AtomicType; + typedef Matrix<ComplexScalar, Dynamic, Dynamic, 0, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType; + typedef internal::MatrixLogarithmAtomic<DynMatrixType> AtomicType; AtomicType atomic; - const PlainObject Aevaluated = m_A.eval(); - MatrixFunction<PlainObject, AtomicType> mf(Aevaluated, atomic); - mf.compute(result); + internal::matrix_function_compute<DerivedEvalTypeClean>::run(m_A, atomic, result); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } private: - typename internal::nested<Derived>::type m_A; - - MatrixLogarithmReturnValue& operator=(const MatrixLogarithmReturnValue&); + const DerivedNested m_A; }; namespace internal { |