diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/MatrixFunctions')
5 files changed, 14 insertions, 17 deletions
diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h index 85ab3d9..e5ebbcf 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h @@ -234,12 +234,13 @@ struct matrix_exp_computeUV<MatrixType, float> template <typename MatrixType> struct matrix_exp_computeUV<MatrixType, double> { + typedef typename NumTraits<typename traits<MatrixType>::Scalar>::Real RealScalar; template <typename ArgType> static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) { using std::frexp; using std::pow; - const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); + const RealScalar l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); squarings = 0; if (l1norm < 1.495585217958292e-002) { matrix_exp_pade3(arg, U, V); @@ -250,10 +251,10 @@ struct matrix_exp_computeUV<MatrixType, double> } else if (l1norm < 2.097847961257068e+000) { matrix_exp_pade9(arg, U, V); } else { - const double maxnorm = 5.371920351148152; + const RealScalar maxnorm = 5.371920351148152; frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; - MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<double>(squarings)); + MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp<RealScalar>(squarings)); matrix_exp_pade13(A, U, V); } } diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h index 3f7d777..3df8239 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h @@ -7,8 +7,8 @@ // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. -#ifndef EIGEN_MATRIX_FUNCTION -#define EIGEN_MATRIX_FUNCTION +#ifndef EIGEN_MATRIX_FUNCTION_H +#define EIGEN_MATRIX_FUNCTION_H #include "StemFunction.h" @@ -577,4 +577,4 @@ const MatrixFunctionReturnValue<Derived> MatrixBase<Derived>::cosh() const } // end namespace Eigen -#endif // EIGEN_MATRIX_FUNCTION +#endif // EIGEN_MATRIX_FUNCTION_H diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h index ff8f6e7..cf5fffa 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h @@ -324,7 +324,7 @@ public: /** \brief Compute the matrix logarithm. * - * \param[out] result Logarithm of \p A, where \A is as specified in the constructor. + * \param[out] result Logarithm of \c A, where \c A is as specified in the constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h index ebc433d..a3273da 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h @@ -57,8 +57,8 @@ class MatrixPowerParenthesesReturnValue : public ReturnByValue< MatrixPowerParen * \param[out] result */ template<typename ResultType> - inline void evalTo(ResultType& res) const - { m_pow.compute(res, m_p); } + inline void evalTo(ResultType& result) const + { m_pow.compute(result, m_p); } Index rows() const { return m_pow.rows(); } Index cols() const { return m_pow.cols(); } @@ -618,8 +618,8 @@ class MatrixPowerReturnValue : public ReturnByValue< MatrixPowerReturnValue<Deri * constructor. */ template<typename ResultType> - inline void evalTo(ResultType& res) const - { MatrixPower<PlainObject>(m_A.eval()).compute(res, m_p); } + inline void evalTo(ResultType& result) const + { MatrixPower<PlainObject>(m_A.eval()).compute(result, m_p); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } @@ -669,8 +669,8 @@ class MatrixComplexPowerReturnValue : public ReturnByValue< MatrixComplexPowerRe * constructor. */ template<typename ResultType> - inline void evalTo(ResultType& res) const - { res = (m_p * m_A.log()).exp(); } + inline void evalTo(ResultType& result) const + { result = (m_p * m_A.log()).exp(); } Index rows() const { return m_A.rows(); } Index cols() const { return m_A.cols(); } diff --git a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h index afd88ec..2e5abda 100644 --- a/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h +++ b/eigen/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h @@ -120,7 +120,6 @@ template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT) { using std::sqrt; - typedef typename MatrixType::Index Index; const Index size = T.rows(); for (Index i = 0; i < size; i++) { if (i == size - 1 || T.coeff(i+1, i) == 0) { @@ -139,7 +138,6 @@ void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrt template <typename MatrixType, typename ResultType> void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT) { - typedef typename MatrixType::Index Index; const Index size = T.rows(); for (Index j = 1; j < size; j++) { if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block @@ -206,7 +204,6 @@ template <typename MatrixType, typename ResultType> void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result) { using std::sqrt; - typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; eigen_assert(arg.rows() == arg.cols()); @@ -318,7 +315,6 @@ template<typename Derived> class MatrixSquareRootReturnValue : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > { protected: - typedef typename Derived::Index Index; typedef typename internal::ref_selector<Derived>::type DerivedNested; public: |