diff options
Diffstat (limited to 'eigen/unsupported/Eigen/src/SVD')
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/BDCSVD.h | 748 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/CMakeLists.txt | 6 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/JacobiSVD.h | 782 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/SVDBase.h | 236 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt | 29 | ||||
-rw-r--r-- | eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt | 21 |
6 files changed, 0 insertions, 1822 deletions
diff --git a/eigen/unsupported/Eigen/src/SVD/BDCSVD.h b/eigen/unsupported/Eigen/src/SVD/BDCSVD.h deleted file mode 100644 index 11d4882..0000000 --- a/eigen/unsupported/Eigen/src/SVD/BDCSVD.h +++ /dev/null @@ -1,748 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// We used the "A Divide-And-Conquer Algorithm for the Bidiagonal SVD" -// research report written by Ming Gu and Stanley C.Eisenstat -// The code variable names correspond to the names they used in their -// report -// -// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> -// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> -// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> -// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> -// -// Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_BDCSVD_H -#define EIGEN_BDCSVD_H - -#define EPSILON 0.0000000000000001 - -#define ALGOSWAP 32 - -namespace Eigen { -/** \ingroup SVD_Module - * - * - * \class BDCSVD - * - * \brief class Bidiagonal Divide and Conquer SVD - * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * We plan to have a very similar interface to JacobiSVD on this class. - * It should be used to speed up the calcul of SVD for big matrices. - */ -template<typename _MatrixType> -class BDCSVD : public SVDBase<_MatrixType> -{ - typedef SVDBase<_MatrixType> Base; - -public: - using Base::rows; - using Base::cols; - - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime, ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime, MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, - MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> - MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, - MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> - MatrixVType; - typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; - typedef typename internal::plain_row_type<MatrixType>::type RowType; - typedef typename internal::plain_col_type<MatrixType>::type ColType; - typedef Matrix<Scalar, Dynamic, Dynamic> MatrixX; - typedef Matrix<RealScalar, Dynamic, Dynamic> MatrixXr; - typedef Matrix<RealScalar, Dynamic, 1> VectorType; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via BDCSVD::compute(const MatrixType&). - */ - BDCSVD() - : SVDBase<_MatrixType>::SVDBase(), - algoswap(ALGOSWAP) - {} - - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem size. - * \sa BDCSVD() - */ - BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase(), - algoswap(ALGOSWAP) - { - allocate(rows, cols, computationOptions); - } - - /** \brief Constructor performing the decomposition of given matrix. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non - default) FullPivHouseholderQR preconditioner. - */ - BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase(), - algoswap(ALGOSWAP) - { - compute(matrix, computationOptions); - } - - ~BDCSVD() - { - } - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit - field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non - default) FullPivHouseholderQR preconditioner. - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix) - { - return compute(matrix, this->m_computationOptions); - } - - void setSwitchSize(int s) - { - eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 4"); - algoswap = s; - } - - - /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * - * \param b the right - hand - side of the equation to solve. - * - * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. - * - * \note SVD solving is implicitly least - squares. Thus, this method serves both purposes of exact solving and least - squares solving. - * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. - */ - template<typename Rhs> - inline const internal::solve_retval<BDCSVD, Rhs> - solve(const MatrixBase<Rhs>& b) const - { - eigen_assert(this->m_isInitialized && "BDCSVD is not initialized."); - eigen_assert(SVDBase<_MatrixType>::computeU() && SVDBase<_MatrixType>::computeV() && - "BDCSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); - return internal::solve_retval<BDCSVD, Rhs>(*this, b.derived()); - } - - - const MatrixUType& matrixU() const - { - eigen_assert(this->m_isInitialized && "SVD is not initialized."); - if (isTranspose){ - eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?"); - return this->m_matrixV; - } - else - { - eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); - return this->m_matrixU; - } - - } - - - const MatrixVType& matrixV() const - { - eigen_assert(this->m_isInitialized && "SVD is not initialized."); - if (isTranspose){ - eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?"); - return this->m_matrixU; - } - else - { - eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); - return this->m_matrixV; - } - } - -private: - void allocate(Index rows, Index cols, unsigned int computationOptions); - void divide (Index firstCol, Index lastCol, Index firstRowW, - Index firstColW, Index shift); - void deflation43(Index firstCol, Index shift, Index i, Index size); - void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size); - void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift); - void copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX houseHolderV); - -protected: - MatrixXr m_naiveU, m_naiveV; - MatrixXr m_computed; - Index nRec; - int algoswap; - bool isTranspose, compU, compV; - -}; //end class BDCSVD - - -// Methode to allocate ans initialize matrix and attributs -template<typename MatrixType> -void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - isTranspose = (cols > rows); - if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return; - m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize ); - if (isTranspose){ - compU = this->computeU(); - compV = this->computeV(); - } - else - { - compV = this->computeU(); - compU = this->computeV(); - } - if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 ); - else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 ); - - if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize); - - - //should be changed for a cleaner implementation - if (isTranspose){ - bool aux; - if (this->computeU()||this->computeV()){ - aux = this->m_computeFullU; - this->m_computeFullU = this->m_computeFullV; - this->m_computeFullV = aux; - aux = this->m_computeThinU; - this->m_computeThinU = this->m_computeThinV; - this->m_computeThinV = aux; - } - } -}// end allocate - -// Methode which compute the BDCSVD for the int -template<> -SVDBase<Matrix<int, Dynamic, Dynamic> >& -BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) { - allocate(matrix.rows(), matrix.cols(), computationOptions); - this->m_nonzeroSingularValues = 0; - m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols()); - for (int i=0; i<this->m_diagSize; i++) { - this->m_singularValues.coeffRef(i) = 0; - } - if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows()); - if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols()); - this->m_isInitialized = true; - return *this; -} - - -// Methode which compute the BDCSVD -template<typename MatrixType> -SVDBase<MatrixType>& -BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsigned int computationOptions) -{ - allocate(matrix.rows(), matrix.cols(), computationOptions); - using std::abs; - - //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ; - MatrixType copy; - if (isTranspose) copy = matrix.adjoint(); - else copy = matrix; - - internal::UpperBidiagonalization<MatrixX > bid(copy); - - //**** step 2 Divide - // this is ugly and has to be redone (care of complex cast) - MatrixXr temp; - temp = bid.bidiagonal().toDenseMatrix().transpose(); - m_computed.setZero(); - for (int i=0; i<this->m_diagSize - 1; i++) { - m_computed(i, i) = temp(i, i); - m_computed(i + 1, i) = temp(i + 1, i); - } - m_computed(this->m_diagSize - 1, this->m_diagSize - 1) = temp(this->m_diagSize - 1, this->m_diagSize - 1); - divide(0, this->m_diagSize - 1, 0, 0, 0); - - //**** step 3 copy - for (int i=0; i<this->m_diagSize; i++) { - RealScalar a = abs(m_computed.coeff(i, i)); - this->m_singularValues.coeffRef(i) = a; - if (a == 0){ - this->m_nonzeroSingularValues = i; - break; - } - else if (i == this->m_diagSize - 1) - { - this->m_nonzeroSingularValues = i + 1; - break; - } - } - copyUV(m_naiveV, m_naiveU, bid.householderU(), bid.householderV()); - this->m_isInitialized = true; - return *this; -}// end compute - - -template<typename MatrixType> -void BDCSVD<MatrixType>::copyUV(MatrixXr naiveU, MatrixXr naiveV, MatrixX householderU, MatrixX householderV){ - if (this->computeU()){ - MatrixX temp = MatrixX::Zero(naiveU.rows(), naiveU.cols()); - temp.real() = naiveU; - if (this->m_computeThinU){ - this->m_matrixU = MatrixX::Identity(householderU.cols(), this->m_nonzeroSingularValues ); - this->m_matrixU.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues) = - temp.block(0, 0, this->m_diagSize, this->m_nonzeroSingularValues); - this->m_matrixU = householderU * this->m_matrixU ; - } - else - { - this->m_matrixU = MatrixX::Identity(householderU.cols(), householderU.cols()); - this->m_matrixU.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize); - this->m_matrixU = householderU * this->m_matrixU ; - } - } - if (this->computeV()){ - MatrixX temp = MatrixX::Zero(naiveV.rows(), naiveV.cols()); - temp.real() = naiveV; - if (this->m_computeThinV){ - this->m_matrixV = MatrixX::Identity(householderV.cols(),this->m_nonzeroSingularValues ); - this->m_matrixV.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues) = - temp.block(0, 0, this->m_nonzeroSingularValues, this->m_nonzeroSingularValues); - this->m_matrixV = householderV * this->m_matrixV ; - } - else - { - this->m_matrixV = MatrixX::Identity(householderV.cols(), householderV.cols()); - this->m_matrixV.block(0, 0, this->m_diagSize, this->m_diagSize) = temp.block(0, 0, this->m_diagSize, this->m_diagSize); - this->m_matrixV = householderV * this->m_matrixV; - } - } -} - -// The divide algorithm is done "in place", we are always working on subsets of the same matrix. The divide methods takes as argument the -// place of the submatrix we are currently working on. - -//@param firstCol : The Index of the first column of the submatrix of m_computed and for m_naiveU; -//@param lastCol : The Index of the last column of the submatrix of m_computed and for m_naiveU; -// lastCol + 1 - firstCol is the size of the submatrix. -//@param firstRowW : The Index of the first row of the matrix W that we are to change. (see the reference paper section 1 for more information on W) -//@param firstRowW : Same as firstRowW with the column. -//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix -// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper. -template<typename MatrixType> -void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, - Index firstColW, Index shift) -{ - // requires nbRows = nbCols + 1; - using std::pow; - using std::sqrt; - using std::abs; - const Index n = lastCol - firstCol + 1; - const Index k = n/2; - RealScalar alphaK; - RealScalar betaK; - RealScalar r0; - RealScalar lambda, phi, c0, s0; - MatrixXr l, f; - // We use the other algorithm which is more efficient for small - // matrices. - if (n < algoswap){ - JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), - ComputeFullU | (ComputeFullV * compV)) ; - if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU(); - else - { - m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0); - m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n); - } - if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV(); - m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero(); - for (int i=0; i<n; i++) - { - m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i); - } - return; - } - // We use the divide and conquer algorithm - alphaK = m_computed(firstCol + k, firstCol + k); - betaK = m_computed(firstCol + k + 1, firstCol + k); - // The divide must be done in that order in order to have good results. Divide change the data inside the submatrices - // and the divide of the right submatrice reads one column of the left submatrice. That's why we need to treat the - // right submatrix before the left one. - divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift); - divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1); - if (compU) - { - lambda = m_naiveU(firstCol + k, firstCol + k); - phi = m_naiveU(firstCol + k + 1, lastCol + 1); - } - else - { - lambda = m_naiveU(1, firstCol + k); - phi = m_naiveU(0, lastCol + 1); - } - r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) - + abs(betaK * phi) * abs(betaK * phi)); - if (compU) - { - l = m_naiveU.row(firstCol + k).segment(firstCol, k); - f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1); - } - else - { - l = m_naiveU.row(1).segment(firstCol, k); - f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1); - } - if (compV) m_naiveV(firstRowW+k, firstColW) = 1; - if (r0 == 0) - { - c0 = 1; - s0 = 0; - } - else - { - c0 = alphaK * lambda / r0; - s0 = betaK * phi / r0; - } - if (compU) - { - MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1)); - // we shiftW Q1 to the right - for (Index i = firstCol + k - 1; i >= firstCol; i--) - { - m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1); - } - // we shift q1 at the left with a factor c0 - m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0); - // last column = q1 * - s0 - m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0)); - // first column = q2 * s0 - m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) << - m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0; - // q2 *= c0 - m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0; - } - else - { - RealScalar q1 = (m_naiveU(0, firstCol + k)); - // we shift Q1 to the right - for (Index i = firstCol + k - 1; i >= firstCol; i--) - { - m_naiveU(0, i + 1) = m_naiveU(0, i); - } - // we shift q1 at the left with a factor c0 - m_naiveU(0, firstCol) = (q1 * c0); - // last column = q1 * - s0 - m_naiveU(0, lastCol + 1) = (q1 * ( - s0)); - // first column = q2 * s0 - m_naiveU(1, firstCol) = m_naiveU(1, lastCol + 1) *s0; - // q2 *= c0 - m_naiveU(1, lastCol + 1) *= c0; - m_naiveU.row(1).segment(firstCol + 1, k).setZero(); - m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero(); - } - m_computed(firstCol + shift, firstCol + shift) = r0; - m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real(); - m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real(); - - - // the line below do the deflation of the matrix for the third part of the algorithm - // Here the deflation is commented because the third part of the algorithm is not implemented - // the third part of the algorithm is a fast SVD on the matrix m_computed which works thanks to the deflation - - deflation(firstCol, lastCol, k, firstRowW, firstColW, shift); - - // Third part of the algorithm, since the real third part of the algorithm is not implemeted we use a JacobiSVD - JacobiSVD<MatrixXr> res= JacobiSVD<MatrixXr>(m_computed.block(firstCol + shift, firstCol +shift, n + 1, n), - ComputeFullU | (ComputeFullV * compV)) ; - if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= res.matrixU(); - else m_naiveU.block(0, firstCol, 2, n + 1) *= res.matrixU(); - - if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= res.matrixV(); - m_computed.block(firstCol + shift, firstCol + shift, n, n) << MatrixXr::Zero(n, n); - for (int i=0; i<n; i++) - m_computed(firstCol + shift + i, firstCol + shift +i) = res.singularValues().coeffRef(i); - // end of the third part - - -}// end divide - - -// page 12_13 -// i >= 1, di almost null and zi non null. -// We use a rotation to zero out zi applied to the left of M -template <typename MatrixType> -void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){ - using std::abs; - using std::sqrt; - using std::pow; - RealScalar c = m_computed(firstCol + shift, firstCol + shift); - RealScalar s = m_computed(i, firstCol + shift); - RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); - if (r == 0){ - m_computed(i, i)=0; - return; - } - c/=r; - s/=r; - m_computed(firstCol + shift, firstCol + shift) = r; - m_computed(i, firstCol + shift) = 0; - m_computed(i, i) = 0; - if (compU){ - m_naiveU.col(firstCol).segment(firstCol,size) = - c * m_naiveU.col(firstCol).segment(firstCol, size) - - s * m_naiveU.col(i).segment(firstCol, size) ; - - m_naiveU.col(i).segment(firstCol, size) = - (c + s*s/c) * m_naiveU.col(i).segment(firstCol, size) + - (s/c) * m_naiveU.col(firstCol).segment(firstCol,size); - } -}// end deflation 43 - - -// page 13 -// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M) -// We apply two rotations to have zj = 0; -template <typename MatrixType> -void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){ - using std::abs; - using std::sqrt; - using std::conj; - using std::pow; - RealScalar c = m_computed(firstColm, firstColm + j - 1); - RealScalar s = m_computed(firstColm, firstColm + i - 1); - RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2)); - if (r==0){ - m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); - return; - } - c/=r; - s/=r; - m_computed(firstColm + i, firstColm) = r; - m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j); - m_computed(firstColm + j, firstColm) = 0; - if (compU){ - m_naiveU.col(firstColu + i).segment(firstColu, size) = - c * m_naiveU.col(firstColu + i).segment(firstColu, size) - - s * m_naiveU.col(firstColu + j).segment(firstColu, size) ; - - m_naiveU.col(firstColu + j).segment(firstColu, size) = - (c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) + - (s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size); - } - if (compV){ - m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) = - c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) + - s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ; - - m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) = - (c + s*s/c) * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) - - (s/c) * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1); - } -}// end deflation 44 - - - -template <typename MatrixType> -void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){ - //condition 4.1 - RealScalar EPS = EPSILON * (std::max<RealScalar>(m_computed(firstCol + shift + 1, firstCol + shift + 1), m_computed(firstCol + k, firstCol + k))); - const Index length = lastCol + 1 - firstCol; - if (m_computed(firstCol + shift, firstCol + shift) < EPS){ - m_computed(firstCol + shift, firstCol + shift) = EPS; - } - //condition 4.2 - for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){ - if (std::abs(m_computed(i, firstCol + shift)) < EPS){ - m_computed(i, firstCol + shift) = 0; - } - } - - //condition 4.3 - for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){ - if (m_computed(i, i) < EPS){ - deflation43(firstCol, shift, i, length); - } - } - - //condition 4.4 - - Index i=firstCol + shift + 1, j=firstCol + shift + k + 1; - //we stock the final place of each line - Index *permutation = new Index[length]; - - for (Index p =1; p < length; p++) { - if (i> firstCol + shift + k){ - permutation[p] = j; - j++; - } else if (j> lastCol + shift) - { - permutation[p] = i; - i++; - } - else - { - if (m_computed(i, i) < m_computed(j, j)){ - permutation[p] = j; - j++; - } - else - { - permutation[p] = i; - i++; - } - } - } - //we do the permutation - RealScalar aux; - //we stock the current index of each col - //and the column of each index - Index *realInd = new Index[length]; - Index *realCol = new Index[length]; - for (int pos = 0; pos< length; pos++){ - realCol[pos] = pos + firstCol + shift; - realInd[pos] = pos; - } - const Index Zero = firstCol + shift; - VectorType temp; - for (int i = 1; i < length - 1; i++){ - const Index I = i + Zero; - const Index realI = realInd[i]; - const Index j = permutation[length - i] - Zero; - const Index J = realCol[j]; - - //diag displace - aux = m_computed(I, I); - m_computed(I, I) = m_computed(J, J); - m_computed(J, J) = aux; - - //firstrow displace - aux = m_computed(I, Zero); - m_computed(I, Zero) = m_computed(J, Zero); - m_computed(J, Zero) = aux; - - // change columns - if (compU) { - temp = m_naiveU.col(I - shift).segment(firstCol, length + 1); - m_naiveU.col(I - shift).segment(firstCol, length + 1) << - m_naiveU.col(J - shift).segment(firstCol, length + 1); - m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp; - } - else - { - temp = m_naiveU.col(I - shift).segment(0, 2); - m_naiveU.col(I - shift).segment(0, 2) << - m_naiveU.col(J - shift).segment(0, 2); - m_naiveU.col(J - shift).segment(0, 2) << temp; - } - if (compV) { - const Index CWI = I + firstColW - Zero; - const Index CWJ = J + firstColW - Zero; - temp = m_naiveV.col(CWI).segment(firstRowW, length); - m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length); - m_naiveV.col(CWJ).segment(firstRowW, length) << temp; - } - - //update real pos - realCol[realI] = J; - realCol[j] = I; - realInd[J - Zero] = realI; - realInd[I - Zero] = j; - } - for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){ - if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){ - deflation44(firstCol , - firstCol + shift, - firstRowW, - firstColW, - i - Zero, - i + 1 - Zero, - length); - } - } - delete [] permutation; - delete [] realInd; - delete [] realCol; - -}//end deflation - - -namespace internal{ - -template<typename _MatrixType, typename Rhs> -struct solve_retval<BDCSVD<_MatrixType>, Rhs> - : solve_retval_base<BDCSVD<_MatrixType>, Rhs> -{ - typedef BDCSVD<_MatrixType> BDCSVDType; - EIGEN_MAKE_SOLVE_HELPERS(BDCSVDType, Rhs) - - template<typename Dest> void evalTo(Dest& dst) const - { - eigen_assert(rhs().rows() == dec().rows()); - // A = U S V^* - // So A^{ - 1} = V S^{ - 1} U^* - Index diagSize = (std::min)(dec().rows(), dec().cols()); - typename BDCSVDType::SingularValuesType invertedSingVals(diagSize); - Index nonzeroSingVals = dec().nonzeroSingularValues(); - invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); - invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); - - dst = dec().matrixV().leftCols(diagSize) - * invertedSingVals.asDiagonal() - * dec().matrixU().leftCols(diagSize).adjoint() - * rhs(); - return; - } -}; - -} //end namespace internal - - /** \svd_module - * - * \return the singular value decomposition of \c *this computed by - * BDC Algorithm - * - * \sa class BDCSVD - */ -/* -template<typename Derived> -BDCSVD<typename MatrixBase<Derived>::PlainObject> -MatrixBase<Derived>::bdcSvd(unsigned int computationOptions) const -{ - return BDCSVD<PlainObject>(*this, computationOptions); -} -*/ - -} // end namespace Eigen - -#endif diff --git a/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt b/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt deleted file mode 100644 index b40baf0..0000000 --- a/eigen/unsupported/Eigen/src/SVD/CMakeLists.txt +++ /dev/null @@ -1,6 +0,0 @@ -FILE(GLOB Eigen_SVD_SRCS "*.h") - -INSTALL(FILES - ${Eigen_SVD_SRCS} - DESTINATION ${INCLUDE_INSTALL_DIR}unsupported/Eigen/src/SVD COMPONENT Devel - ) diff --git a/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h b/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h deleted file mode 100644 index 02fac40..0000000 --- a/eigen/unsupported/Eigen/src/SVD/JacobiSVD.h +++ /dev/null @@ -1,782 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_JACOBISVD_H -#define EIGEN_JACOBISVD_H - -namespace Eigen { - -namespace internal { -// forward declaration (needed by ICC) -// the empty body is required by MSVC -template<typename MatrixType, int QRPreconditioner, - bool IsComplex = NumTraits<typename MatrixType::Scalar>::IsComplex> -struct svd_precondition_2x2_block_to_be_real {}; - -/*** QR preconditioners (R-SVD) - *** - *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. - *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for - *** JacobiSVD which by itself is only able to work on square matrices. - ***/ - -enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; - -template<typename MatrixType, int QRPreconditioner, int Case> -struct qr_preconditioner_should_do_anything -{ - enum { a = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, - b = MatrixType::RowsAtCompileTime != Dynamic && - MatrixType::ColsAtCompileTime != Dynamic && - MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, - ret = !( (QRPreconditioner == NoQRPreconditioner) || - (Case == PreconditionIfMoreColsThanRows && bool(a)) || - (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) - }; -}; - -template<typename MatrixType, int QRPreconditioner, int Case, - bool DoAnything = qr_preconditioner_should_do_anything<MatrixType, QRPreconditioner, Case>::ret -> struct qr_preconditioner_impl {}; - -template<typename MatrixType, int QRPreconditioner, int Case> -class qr_preconditioner_impl<MatrixType, QRPreconditioner, Case, false> -{ -public: - typedef typename MatrixType::Index Index; - void allocate(const JacobiSVD<MatrixType, QRPreconditioner>&) {} - bool run(JacobiSVD<MatrixType, QRPreconditioner>&, const MatrixType&) - { - return false; - } -}; - -/*** preconditioner using FullPivHouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime - }; - typedef Matrix<Scalar, 1, RowsAtCompileTime, RowMajor, 1, MaxRowsAtCompileTime> WorkspaceType; - - void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - } - - bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } -private: - typedef FullPivHouseholderQR<MatrixType> QRType; - QRType m_qr; - WorkspaceType m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, FullPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - m_adjoint.resize(svd.cols(), svd.rows()); - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, FullPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } -private: - typedef FullPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** preconditioner using ColPivHouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - - void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); - return true; - } - return false; - } - -private: - typedef ColPivHouseholderQR<MatrixType> QRType; - QRType m_qr; - typename internal::plain_col_type<MatrixType>::type m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, ColPivHouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD<MatrixType, ColPivHouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); - return true; - } - else return false; - } - -private: - typedef ColPivHouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** preconditioner using HouseholderQR ***/ - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreRowsThanCols, true> -{ -public: - typedef typename MatrixType::Index Index; - - void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) - { - if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.rows(), svd.cols()); - } - if (svd.m_computeFullU) m_workspace.resize(svd.rows()); - else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); - } - - bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.rows() > matrix.cols()) - { - m_qr.compute(matrix); - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView<Upper>(); - if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); - else if(svd.m_computeThinU) - { - svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); - } - if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); - return true; - } - return false; - } -private: - typedef HouseholderQR<MatrixType> QRType; - QRType m_qr; - typename internal::plain_col_type<MatrixType>::type m_workspace; -}; - -template<typename MatrixType> -class qr_preconditioner_impl<MatrixType, HouseholderQRPreconditioner, PreconditionIfMoreColsThanRows, true> -{ -public: - typedef typename MatrixType::Index Index; - typedef typename MatrixType::Scalar Scalar; - enum - { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - Options = MatrixType::Options - }; - - typedef Matrix<Scalar, ColsAtCompileTime, RowsAtCompileTime, Options, MaxColsAtCompileTime, MaxRowsAtCompileTime> - TransposeTypeWithSameStorageOrder; - - void allocate(const JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd) - { - if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) - { - m_qr.~QRType(); - ::new (&m_qr) QRType(svd.cols(), svd.rows()); - } - if (svd.m_computeFullV) m_workspace.resize(svd.cols()); - else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); - m_adjoint.resize(svd.cols(), svd.rows()); - } - - bool run(JacobiSVD<MatrixType, HouseholderQRPreconditioner>& svd, const MatrixType& matrix) - { - if(matrix.cols() > matrix.rows()) - { - m_adjoint = matrix.adjoint(); - m_qr.compute(m_adjoint); - - svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView<Upper>().adjoint(); - if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); - else if(svd.m_computeThinV) - { - svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); - m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); - } - if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); - return true; - } - else return false; - } - -private: - typedef HouseholderQR<TransposeTypeWithSameStorageOrder> QRType; - QRType m_qr; - TransposeTypeWithSameStorageOrder m_adjoint; - typename internal::plain_row_type<MatrixType>::type m_workspace; -}; - -/*** 2x2 SVD implementation - *** - *** JacobiSVD consists in performing a series of 2x2 SVD subproblems - ***/ - -template<typename MatrixType, int QRPreconditioner> -struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, false> -{ - typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename SVD::Index Index; - static void run(typename SVD::WorkMatrixType&, SVD&, Index, Index) {} -}; - -template<typename MatrixType, int QRPreconditioner> -struct svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner, true> -{ - typedef JacobiSVD<MatrixType, QRPreconditioner> SVD; - typedef typename MatrixType::Scalar Scalar; - typedef typename MatrixType::RealScalar RealScalar; - typedef typename SVD::Index Index; - static void run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q) - { - using std::sqrt; - Scalar z; - JacobiRotation<Scalar> rot; - RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); - if(n==0) - { - z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.row(p) *= z; - if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - else - { - rot.c() = conj(work_matrix.coeff(p,p)) / n; - rot.s() = work_matrix.coeff(q,p) / n; - work_matrix.applyOnTheLeft(p,q,rot); - if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); - if(work_matrix.coeff(p,q) != Scalar(0)) - { - Scalar z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); - work_matrix.col(q) *= z; - if(svd.computeV()) svd.m_matrixV.col(q) *= z; - } - if(work_matrix.coeff(q,q) != Scalar(0)) - { - z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); - work_matrix.row(q) *= z; - if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); - } - } - } -}; - -template<typename MatrixType, typename RealScalar, typename Index> -void real_2x2_jacobi_svd(const MatrixType& matrix, Index p, Index q, - JacobiRotation<RealScalar> *j_left, - JacobiRotation<RealScalar> *j_right) -{ - using std::sqrt; - Matrix<RealScalar,2,2> m; - m << numext::real(matrix.coeff(p,p)), numext::real(matrix.coeff(p,q)), - numext::real(matrix.coeff(q,p)), numext::real(matrix.coeff(q,q)); - JacobiRotation<RealScalar> rot1; - RealScalar t = m.coeff(0,0) + m.coeff(1,1); - RealScalar d = m.coeff(1,0) - m.coeff(0,1); - if(t == RealScalar(0)) - { - rot1.c() = RealScalar(0); - rot1.s() = d > RealScalar(0) ? RealScalar(1) : RealScalar(-1); - } - else - { - RealScalar u = d / t; - rot1.c() = RealScalar(1) / sqrt(RealScalar(1) + numext::abs2(u)); - rot1.s() = rot1.c() * u; - } - m.applyOnTheLeft(0,1,rot1); - j_right->makeJacobi(m,0,1); - *j_left = rot1 * j_right->transpose(); -} - -} // end namespace internal - -/** \ingroup SVD_Module - * - * - * \class JacobiSVD - * - * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix - * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * \param QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally - * for the R-SVD step for non-square matrices. See discussion of possible values below. - * - * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product - * \f[ A = U S V^* \f] - * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; - * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left - * and right \em singular \em vectors of \a A respectively. - * - * Singular values are always sorted in decreasing order. - * - * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. - * - * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the - * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual - * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, - * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. - * - * Here's an example demonstrating basic usage: - * \include JacobiSVD_basic.cpp - * Output: \verbinclude JacobiSVD_basic.out - * - * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than - * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and - * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. - * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. - * - * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to - * terminate in finite (and reasonable) time. - * - * The possible values for QRPreconditioner are: - * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. - * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. - * Contrary to other QRs, it doesn't allow computing thin unitaries. - * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. - * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization - * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive - * process is more reliable than the optimized bidiagonal SVD iterations. - * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing - * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in - * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking - * if QR preconditioning is needed before applying it anyway. - * - * \sa MatrixBase::jacobiSvd() - */ -template<typename _MatrixType, int QRPreconditioner> -class JacobiSVD : public SVDBase<_MatrixType> -{ - public: - - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, - MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> - MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, - MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> - MatrixVType; - typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; - typedef typename internal::plain_row_type<MatrixType>::type RowType; - typedef typename internal::plain_col_type<MatrixType>::type ColType; - typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, - MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> - WorkMatrixType; - - /** \brief Default Constructor. - * - * The default constructor is useful in cases in which the user intends to - * perform decompositions via JacobiSVD::compute(const MatrixType&). - */ - JacobiSVD() - : SVDBase<_MatrixType>::SVDBase() - {} - - - /** \brief Default Constructor with memory preallocation - * - * Like the default constructor but with preallocation of the internal data - * according to the specified problem size. - * \sa JacobiSVD() - */ - JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase() - { - allocate(rows, cols, computationOptions); - } - - /** \brief Constructor performing the decomposition of given matrix. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) - : SVDBase<_MatrixType>::SVDBase() - { - compute(matrix, computationOptions); - } - - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - SVDBase<MatrixType>& compute(const MatrixType& matrix) - { - return compute(matrix, this->m_computationOptions); - } - - /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A. - * - * \param b the right-hand-side of the equation to solve. - * - * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V. - * - * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving. - * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$. - */ - template<typename Rhs> - inline const internal::solve_retval<JacobiSVD, Rhs> - solve(const MatrixBase<Rhs>& b) const - { - eigen_assert(this->m_isInitialized && "JacobiSVD is not initialized."); - eigen_assert(SVDBase<MatrixType>::computeU() && SVDBase<MatrixType>::computeV() && "JacobiSVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice)."); - return internal::solve_retval<JacobiSVD, Rhs>(*this, b.derived()); - } - - - - private: - void allocate(Index rows, Index cols, unsigned int computationOptions); - - protected: - WorkMatrixType m_workMatrix; - - template<typename __MatrixType, int _QRPreconditioner, bool _IsComplex> - friend struct internal::svd_precondition_2x2_block_to_be_real; - template<typename __MatrixType, int _QRPreconditioner, int _Case, bool _DoAnything> - friend struct internal::qr_preconditioner_impl; - - internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreColsThanRows> m_qr_precond_morecols; - internal::qr_preconditioner_impl<MatrixType, QRPreconditioner, internal::PreconditionIfMoreRowsThanCols> m_qr_precond_morerows; -}; - -template<typename MatrixType, int QRPreconditioner> -void JacobiSVD<MatrixType, QRPreconditioner>::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - if (SVDBase<MatrixType>::allocate(rows, cols, computationOptions)) return; - - if (QRPreconditioner == FullPivHouseholderQRPreconditioner) - { - eigen_assert(!(this->m_computeThinU || this->m_computeThinV) && - "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " - "Use the ColPivHouseholderQR preconditioner instead."); - } - - m_workMatrix.resize(this->m_diagSize, this->m_diagSize); - - if(this->m_cols>this->m_rows) m_qr_precond_morecols.allocate(*this); - if(this->m_rows>this->m_cols) m_qr_precond_morerows.allocate(*this); -} - -template<typename MatrixType, int QRPreconditioner> -SVDBase<MatrixType>& -JacobiSVD<MatrixType, QRPreconditioner>::compute(const MatrixType& matrix, unsigned int computationOptions) -{ - using std::abs; - allocate(matrix.rows(), matrix.cols(), computationOptions); - - // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, - // only worsening the precision of U and V as we accumulate more rotations - const RealScalar precision = RealScalar(2) * NumTraits<Scalar>::epsilon(); - - // limit for very small denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) - const RealScalar considerAsZero = RealScalar(2) * std::numeric_limits<RealScalar>::denorm_min(); - - /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ - - if(!m_qr_precond_morecols.run(*this, matrix) && !m_qr_precond_morerows.run(*this, matrix)) - { - m_workMatrix = matrix.block(0,0,this->m_diagSize,this->m_diagSize); - if(this->m_computeFullU) this->m_matrixU.setIdentity(this->m_rows,this->m_rows); - if(this->m_computeThinU) this->m_matrixU.setIdentity(this->m_rows,this->m_diagSize); - if(this->m_computeFullV) this->m_matrixV.setIdentity(this->m_cols,this->m_cols); - if(this->m_computeThinV) this->m_matrixV.setIdentity(this->m_cols, this->m_diagSize); - } - - /*** step 2. The main Jacobi SVD iteration. ***/ - - bool finished = false; - while(!finished) - { - finished = true; - - // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix - - for(Index p = 1; p < this->m_diagSize; ++p) - { - for(Index q = 0; q < p; ++q) - { - // if this 2x2 sub-matrix is not diagonal already... - // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't - // keep us iterating forever. Similarly, small denormal numbers are considered zero. - using std::max; - RealScalar threshold = (max)(considerAsZero, precision * (max)(abs(m_workMatrix.coeff(p,p)), - abs(m_workMatrix.coeff(q,q)))); - if((max)(abs(m_workMatrix.coeff(p,q)),abs(m_workMatrix.coeff(q,p))) > threshold) - { - finished = false; - - // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal - internal::svd_precondition_2x2_block_to_be_real<MatrixType, QRPreconditioner>::run(m_workMatrix, *this, p, q); - JacobiRotation<RealScalar> j_left, j_right; - internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); - - // accumulate resulting Jacobi rotations - m_workMatrix.applyOnTheLeft(p,q,j_left); - if(SVDBase<MatrixType>::computeU()) this->m_matrixU.applyOnTheRight(p,q,j_left.transpose()); - - m_workMatrix.applyOnTheRight(p,q,j_right); - if(SVDBase<MatrixType>::computeV()) this->m_matrixV.applyOnTheRight(p,q,j_right); - } - } - } - } - - /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ - - for(Index i = 0; i < this->m_diagSize; ++i) - { - RealScalar a = abs(m_workMatrix.coeff(i,i)); - this->m_singularValues.coeffRef(i) = a; - if(SVDBase<MatrixType>::computeU() && (a!=RealScalar(0))) this->m_matrixU.col(i) *= this->m_workMatrix.coeff(i,i)/a; - } - - /*** step 4. Sort singular values in descending order and compute the number of nonzero singular values ***/ - - this->m_nonzeroSingularValues = this->m_diagSize; - for(Index i = 0; i < this->m_diagSize; i++) - { - Index pos; - RealScalar maxRemainingSingularValue = this->m_singularValues.tail(this->m_diagSize-i).maxCoeff(&pos); - if(maxRemainingSingularValue == RealScalar(0)) - { - this->m_nonzeroSingularValues = i; - break; - } - if(pos) - { - pos += i; - std::swap(this->m_singularValues.coeffRef(i), this->m_singularValues.coeffRef(pos)); - if(SVDBase<MatrixType>::computeU()) this->m_matrixU.col(pos).swap(this->m_matrixU.col(i)); - if(SVDBase<MatrixType>::computeV()) this->m_matrixV.col(pos).swap(this->m_matrixV.col(i)); - } - } - - this->m_isInitialized = true; - return *this; -} - -namespace internal { -template<typename _MatrixType, int QRPreconditioner, typename Rhs> -struct solve_retval<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> - : solve_retval_base<JacobiSVD<_MatrixType, QRPreconditioner>, Rhs> -{ - typedef JacobiSVD<_MatrixType, QRPreconditioner> JacobiSVDType; - EIGEN_MAKE_SOLVE_HELPERS(JacobiSVDType,Rhs) - - template<typename Dest> void evalTo(Dest& dst) const - { - eigen_assert(rhs().rows() == dec().rows()); - - // A = U S V^* - // So A^{-1} = V S^{-1} U^* - - Index diagSize = (std::min)(dec().rows(), dec().cols()); - typename JacobiSVDType::SingularValuesType invertedSingVals(diagSize); - - Index nonzeroSingVals = dec().nonzeroSingularValues(); - invertedSingVals.head(nonzeroSingVals) = dec().singularValues().head(nonzeroSingVals).array().inverse(); - invertedSingVals.tail(diagSize - nonzeroSingVals).setZero(); - - dst = dec().matrixV().leftCols(diagSize) - * invertedSingVals.asDiagonal() - * dec().matrixU().leftCols(diagSize).adjoint() - * rhs(); - } -}; -} // end namespace internal - -/** \svd_module - * - * \return the singular value decomposition of \c *this computed by two-sided - * Jacobi transformations. - * - * \sa class JacobiSVD - */ -template<typename Derived> -JacobiSVD<typename MatrixBase<Derived>::PlainObject> -MatrixBase<Derived>::jacobiSvd(unsigned int computationOptions) const -{ - return JacobiSVD<PlainObject>(*this, computationOptions); -} - -} // end namespace Eigen - -#endif // EIGEN_JACOBISVD_H diff --git a/eigen/unsupported/Eigen/src/SVD/SVDBase.h b/eigen/unsupported/Eigen/src/SVD/SVDBase.h deleted file mode 100644 index fd8af3b..0000000 --- a/eigen/unsupported/Eigen/src/SVD/SVDBase.h +++ /dev/null @@ -1,236 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com> -// -// Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com> -// Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr> -// Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr> -// Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr> -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_SVD_H -#define EIGEN_SVD_H - -namespace Eigen { -/** \ingroup SVD_Module - * - * - * \class SVDBase - * - * \brief Mother class of SVD classes algorithms - * - * \param MatrixType the type of the matrix of which we are computing the SVD decomposition - * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product - * \f[ A = U S V^* \f] - * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; - * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left - * and right \em singular \em vectors of \a A respectively. - * - * Singular values are always sorted in decreasing order. - * - * - * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the - * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual - * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, - * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. - * - * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to - * terminate in finite (and reasonable) time. - * \sa MatrixBase::genericSvd() - */ -template<typename _MatrixType> -class SVDBase -{ - -public: - typedef _MatrixType MatrixType; - typedef typename MatrixType::Scalar Scalar; - typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; - typedef typename MatrixType::Index Index; - enum { - RowsAtCompileTime = MatrixType::RowsAtCompileTime, - ColsAtCompileTime = MatrixType::ColsAtCompileTime, - DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), - MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, - MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, - MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), - MatrixOptions = MatrixType::Options - }; - - typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, - MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> - MatrixUType; - typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, - MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> - MatrixVType; - typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType; - typedef typename internal::plain_row_type<MatrixType>::type RowType; - typedef typename internal::plain_col_type<MatrixType>::type ColType; - typedef Matrix<Scalar, DiagSizeAtCompileTime, DiagSizeAtCompileTime, - MatrixOptions, MaxDiagSizeAtCompileTime, MaxDiagSizeAtCompileTime> - WorkMatrixType; - - - - - /** \brief Method performing the decomposition of given matrix using custom options. - * - * \param matrix the matrix to decompose - * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. - * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, - * #ComputeFullV, #ComputeThinV. - * - * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not - * available with the (non-default) FullPivHouseholderQR preconditioner. - */ - SVDBase& compute(const MatrixType& matrix, unsigned int computationOptions); - - /** \brief Method performing the decomposition of given matrix using current options. - * - * \param matrix the matrix to decompose - * - * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). - */ - //virtual SVDBase& compute(const MatrixType& matrix) = 0; - SVDBase& compute(const MatrixType& matrix); - - /** \returns the \a U matrix. - * - * For the SVDBase decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the U matrix is n-by-n if you asked for #ComputeFullU, and is n-by-m if you asked for #ComputeThinU. - * - * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a U to be computed. - */ - const MatrixUType& matrixU() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?"); - return m_matrixU; - } - - /** \returns the \a V matrix. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, - * the V matrix is p-by-p if you asked for #ComputeFullV, and is p-by-m if you asked for ComputeThinV. - * - * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed. - * - * This method asserts that you asked for \a V to be computed. - */ - const MatrixVType& matrixV() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?"); - return m_matrixV; - } - - /** \returns the vector of singular values. - * - * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the - * returned vector has size \a m. Singular values are always sorted in decreasing order. - */ - const SingularValuesType& singularValues() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - return m_singularValues; - } - - - - /** \returns the number of singular values that are not exactly 0 */ - Index nonzeroSingularValues() const - { - eigen_assert(m_isInitialized && "SVD is not initialized."); - return m_nonzeroSingularValues; - } - - - /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */ - inline bool computeU() const { return m_computeFullU || m_computeThinU; } - /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */ - inline bool computeV() const { return m_computeFullV || m_computeThinV; } - - - inline Index rows() const { return m_rows; } - inline Index cols() const { return m_cols; } - - -protected: - // return true if already allocated - bool allocate(Index rows, Index cols, unsigned int computationOptions) ; - - MatrixUType m_matrixU; - MatrixVType m_matrixV; - SingularValuesType m_singularValues; - bool m_isInitialized, m_isAllocated; - bool m_computeFullU, m_computeThinU; - bool m_computeFullV, m_computeThinV; - unsigned int m_computationOptions; - Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize; - - - /** \brief Default Constructor. - * - * Default constructor of SVDBase - */ - SVDBase() - : m_isInitialized(false), - m_isAllocated(false), - m_computationOptions(0), - m_rows(-1), m_cols(-1) - {} - - -}; - - -template<typename MatrixType> -bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions) -{ - eigen_assert(rows >= 0 && cols >= 0); - - if (m_isAllocated && - rows == m_rows && - cols == m_cols && - computationOptions == m_computationOptions) - { - return true; - } - - m_rows = rows; - m_cols = cols; - m_isInitialized = false; - m_isAllocated = true; - m_computationOptions = computationOptions; - m_computeFullU = (computationOptions & ComputeFullU) != 0; - m_computeThinU = (computationOptions & ComputeThinU) != 0; - m_computeFullV = (computationOptions & ComputeFullV) != 0; - m_computeThinV = (computationOptions & ComputeThinV) != 0; - eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U"); - eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V"); - eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && - "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns."); - - m_diagSize = (std::min)(m_rows, m_cols); - m_singularValues.resize(m_diagSize); - if(RowsAtCompileTime==Dynamic) - m_matrixU.resize(m_rows, m_computeFullU ? m_rows - : m_computeThinU ? m_diagSize - : 0); - if(ColsAtCompileTime==Dynamic) - m_matrixV.resize(m_cols, m_computeFullV ? m_cols - : m_computeThinV ? m_diagSize - : 0); - - return false; -} - -}// end namespace - -#endif // EIGEN_SVD_H diff --git a/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt b/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt deleted file mode 100644 index 0bc9a46..0000000 --- a/eigen/unsupported/Eigen/src/SVD/TODOBdcsvd.txt +++ /dev/null @@ -1,29 +0,0 @@ -TO DO LIST - - - -(optional optimization) - do all the allocations in the allocate part - - support static matrices - - return a error at compilation time when using integer matrices (int, long, std::complex<int>, ...) - -to finish the algorithm : - -implement the last part of the algorithm as described on the reference paper. - You may find more information on that part on this paper - - -to replace the call to JacobiSVD at the end of the divide algorithm, just after the call to - deflation. - -(suggested step by step resolution) - 0) comment the call to Jacobi in the last part of the divide method and everything right after - until the end of the method. What is commented can be a guideline to steps 3) 4) and 6) - 1) solve the secular equation (Characteristic equation) on the values that are not null (zi!=0 and di!=0), after the deflation - wich should be uncommented in the divide method - 2) remember the values of the singular values that are already computed (zi=0) - 3) assign the singular values found in m_computed at the right places (with the ones found in step 2) ) - in decreasing order - 4) set the firstcol to zero (except the first element) in m_computed - 5) compute all the singular vectors when CompV is set to true and only the left vectors when - CompV is set to false - 6) multiply naiveU and naiveV to the right by the matrices found, only naiveU when CompV is set to - false, /!\ if CompU is false NaiveU has only 2 rows - 7) delete everything commented in step 0) diff --git a/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt b/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt deleted file mode 100644 index 8563dda..0000000 --- a/eigen/unsupported/Eigen/src/SVD/doneInBDCSVD.txt +++ /dev/null @@ -1,21 +0,0 @@ -This unsupported package is about a divide and conquer algorithm to compute SVD. - -The implementation follows as closely as possible the following reference paper : -http://www.cs.yale.edu/publications/techreports/tr933.pdf - -The code documentation uses the same names for variables as the reference paper. The code, deflation included, is -working but there are a few things that could be optimised as explained in the TODOBdsvd. - -In the code comments were put at the line where would be the third step of the algorithm so one could simply add the call -of a function doing the last part of the algorithm and that would not require any knowledge of the part we implemented. - -In the TODOBdcsvd we explain what is the main difficulty of the last part and suggest a reference paper to help solve it. - -The implemented has trouble with fixed size matrices. - -In the actual implementation, it returns matrices of zero when ask to do a svd on an int matrix. - - -Paper for the third part: -http://www.stat.uchicago.edu/~lekheng/courses/302/classics/greengard-rokhlin.pdf - |