diff options
Diffstat (limited to 'eigen/unsupported/test/autodiff_scalar.cpp')
-rw-r--r-- | eigen/unsupported/test/autodiff_scalar.cpp | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/eigen/unsupported/test/autodiff_scalar.cpp b/eigen/unsupported/test/autodiff_scalar.cpp new file mode 100644 index 0000000..4df2f5c --- /dev/null +++ b/eigen/unsupported/test/autodiff_scalar.cpp @@ -0,0 +1,83 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2013 Christoph Hertzberg <chtz@informatik.uni-bremen.de> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "main.h" +#include <unsupported/Eigen/AutoDiff> + +/* + * In this file scalar derivations are tested for correctness. + * TODO add more tests! + */ + +template<typename Scalar> void check_atan2() +{ + typedef Matrix<Scalar, 1, 1> Deriv1; + typedef AutoDiffScalar<Deriv1> AD; + + AD x(internal::random<Scalar>(-3.0, 3.0), Deriv1::UnitX()); + + using std::exp; + Scalar r = exp(internal::random<Scalar>(-10, 10)); + + AD s = sin(x), c = cos(x); + AD res = atan2(r*s, r*c); + + VERIFY_IS_APPROX(res.value(), x.value()); + VERIFY_IS_APPROX(res.derivatives(), x.derivatives()); + + res = atan2(r*s+0, r*c+0); + VERIFY_IS_APPROX(res.value(), x.value()); + VERIFY_IS_APPROX(res.derivatives(), x.derivatives()); +} + +template<typename Scalar> void check_hyperbolic_functions() +{ + using std::sinh; + using std::cosh; + using std::tanh; + typedef Matrix<Scalar, 1, 1> Deriv1; + typedef AutoDiffScalar<Deriv1> AD; + Deriv1 p = Deriv1::Random(); + AD val(p.x(),Deriv1::UnitX()); + + Scalar cosh_px = std::cosh(p.x()); + AD res1 = tanh(val); + VERIFY_IS_APPROX(res1.value(), std::tanh(p.x())); + VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(1.0) / (cosh_px * cosh_px)); + + AD res2 = sinh(val); + VERIFY_IS_APPROX(res2.value(), std::sinh(p.x())); + VERIFY_IS_APPROX(res2.derivatives().x(), cosh_px); + + AD res3 = cosh(val); + VERIFY_IS_APPROX(res3.value(), cosh_px); + VERIFY_IS_APPROX(res3.derivatives().x(), std::sinh(p.x())); + + // Check constant values. + const Scalar sample_point = Scalar(1) / Scalar(3); + val = AD(sample_point,Deriv1::UnitX()); + res1 = tanh(val); + VERIFY_IS_APPROX(res1.derivatives().x(), Scalar(0.896629559604914)); + + res2 = sinh(val); + VERIFY_IS_APPROX(res2.derivatives().x(), Scalar(1.056071867829939)); + + res3 = cosh(val); + VERIFY_IS_APPROX(res3.derivatives().x(), Scalar(0.339540557256150)); +} + +void test_autodiff_scalar() +{ + for(int i = 0; i < g_repeat; i++) { + CALL_SUBTEST_1( check_atan2<float>() ); + CALL_SUBTEST_2( check_atan2<double>() ); + CALL_SUBTEST_3( check_hyperbolic_functions<float>() ); + CALL_SUBTEST_4( check_hyperbolic_functions<double>() ); + } +} |