From 35f7829af10c61e33dd2e2a7a015058e11a11ea0 Mon Sep 17 00:00:00 2001 From: Stanislaw Halik Date: Sat, 25 Mar 2017 14:17:07 +0100 Subject: update --- .../Eigen/src/Eigen2Support/Geometry/Quaternion.h | 495 --------------------- 1 file changed, 495 deletions(-) delete mode 100644 eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h (limited to 'eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h') diff --git a/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h b/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h deleted file mode 100644 index 4b6390c..0000000 --- a/eigen/Eigen/src/Eigen2Support/Geometry/Quaternion.h +++ /dev/null @@ -1,495 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -// no include guard, we'll include this twice from All.h from Eigen2Support, and it's internal anyway - -namespace Eigen { - -template -struct ei_quaternion_assign_impl; - -/** \geometry_module \ingroup Geometry_Module - * - * \class Quaternion - * - * \brief The quaternion class used to represent 3D orientations and rotations - * - * \param _Scalar the scalar type, i.e., the type of the coefficients - * - * This class represents a quaternion \f$ w+xi+yj+zk \f$ that is a convenient representation of - * orientations and rotations of objects in three dimensions. Compared to other representations - * like Euler angles or 3x3 matrices, quatertions offer the following advantages: - * \li \b compact storage (4 scalars) - * \li \b efficient to compose (28 flops), - * \li \b stable spherical interpolation - * - * The following two typedefs are provided for convenience: - * \li \c Quaternionf for \c float - * \li \c Quaterniond for \c double - * - * \sa class AngleAxis, class Transform - */ - -template struct ei_traits > -{ - typedef _Scalar Scalar; -}; - -template -class Quaternion : public RotationBase,3> -{ - typedef RotationBase,3> Base; - -public: - EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,4) - - using Base::operator*; - - /** the scalar type of the coefficients */ - typedef _Scalar Scalar; - - /** the type of the Coefficients 4-vector */ - typedef Matrix Coefficients; - /** the type of a 3D vector */ - typedef Matrix Vector3; - /** the equivalent rotation matrix type */ - typedef Matrix Matrix3; - /** the equivalent angle-axis type */ - typedef AngleAxis AngleAxisType; - - /** \returns the \c x coefficient */ - inline Scalar x() const { return m_coeffs.coeff(0); } - /** \returns the \c y coefficient */ - inline Scalar y() const { return m_coeffs.coeff(1); } - /** \returns the \c z coefficient */ - inline Scalar z() const { return m_coeffs.coeff(2); } - /** \returns the \c w coefficient */ - inline Scalar w() const { return m_coeffs.coeff(3); } - - /** \returns a reference to the \c x coefficient */ - inline Scalar& x() { return m_coeffs.coeffRef(0); } - /** \returns a reference to the \c y coefficient */ - inline Scalar& y() { return m_coeffs.coeffRef(1); } - /** \returns a reference to the \c z coefficient */ - inline Scalar& z() { return m_coeffs.coeffRef(2); } - /** \returns a reference to the \c w coefficient */ - inline Scalar& w() { return m_coeffs.coeffRef(3); } - - /** \returns a read-only vector expression of the imaginary part (x,y,z) */ - inline const Block vec() const { return m_coeffs.template start<3>(); } - - /** \returns a vector expression of the imaginary part (x,y,z) */ - inline Block vec() { return m_coeffs.template start<3>(); } - - /** \returns a read-only vector expression of the coefficients (x,y,z,w) */ - inline const Coefficients& coeffs() const { return m_coeffs; } - - /** \returns a vector expression of the coefficients (x,y,z,w) */ - inline Coefficients& coeffs() { return m_coeffs; } - - /** Default constructor leaving the quaternion uninitialized. */ - inline Quaternion() {} - - /** Constructs and initializes the quaternion \f$ w+xi+yj+zk \f$ from - * its four coefficients \a w, \a x, \a y and \a z. - * - * \warning Note the order of the arguments: the real \a w coefficient first, - * while internally the coefficients are stored in the following order: - * [\c x, \c y, \c z, \c w] - */ - inline Quaternion(Scalar w, Scalar x, Scalar y, Scalar z) - { m_coeffs << x, y, z, w; } - - /** Copy constructor */ - inline Quaternion(const Quaternion& other) { m_coeffs = other.m_coeffs; } - - /** Constructs and initializes a quaternion from the angle-axis \a aa */ - explicit inline Quaternion(const AngleAxisType& aa) { *this = aa; } - - /** Constructs and initializes a quaternion from either: - * - a rotation matrix expression, - * - a 4D vector expression representing quaternion coefficients. - * \sa operator=(MatrixBase) - */ - template - explicit inline Quaternion(const MatrixBase& other) { *this = other; } - - Quaternion& operator=(const Quaternion& other); - Quaternion& operator=(const AngleAxisType& aa); - template - Quaternion& operator=(const MatrixBase& m); - - /** \returns a quaternion representing an identity rotation - * \sa MatrixBase::Identity() - */ - static inline Quaternion Identity() { return Quaternion(1, 0, 0, 0); } - - /** \sa Quaternion::Identity(), MatrixBase::setIdentity() - */ - inline Quaternion& setIdentity() { m_coeffs << 0, 0, 0, 1; return *this; } - - /** \returns the squared norm of the quaternion's coefficients - * \sa Quaternion::norm(), MatrixBase::squaredNorm() - */ - inline Scalar squaredNorm() const { return m_coeffs.squaredNorm(); } - - /** \returns the norm of the quaternion's coefficients - * \sa Quaternion::squaredNorm(), MatrixBase::norm() - */ - inline Scalar norm() const { return m_coeffs.norm(); } - - /** Normalizes the quaternion \c *this - * \sa normalized(), MatrixBase::normalize() */ - inline void normalize() { m_coeffs.normalize(); } - /** \returns a normalized version of \c *this - * \sa normalize(), MatrixBase::normalized() */ - inline Quaternion normalized() const { return Quaternion(m_coeffs.normalized()); } - - /** \returns the dot product of \c *this and \a other - * Geometrically speaking, the dot product of two unit quaternions - * corresponds to the cosine of half the angle between the two rotations. - * \sa angularDistance() - */ - inline Scalar eigen2_dot(const Quaternion& other) const { return m_coeffs.eigen2_dot(other.m_coeffs); } - - inline Scalar angularDistance(const Quaternion& other) const; - - Matrix3 toRotationMatrix(void) const; - - template - Quaternion& setFromTwoVectors(const MatrixBase& a, const MatrixBase& b); - - inline Quaternion operator* (const Quaternion& q) const; - inline Quaternion& operator*= (const Quaternion& q); - - Quaternion inverse(void) const; - Quaternion conjugate(void) const; - - Quaternion slerp(Scalar t, const Quaternion& other) const; - - template - Vector3 operator* (const MatrixBase& vec) const; - - /** \returns \c *this with scalar type casted to \a NewScalarType - * - * Note that if \a NewScalarType is equal to the current scalar type of \c *this - * then this function smartly returns a const reference to \c *this. - */ - template - inline typename internal::cast_return_type >::type cast() const - { return typename internal::cast_return_type >::type(*this); } - - /** Copy constructor with scalar type conversion */ - template - inline explicit Quaternion(const Quaternion& other) - { m_coeffs = other.coeffs().template cast(); } - - /** \returns \c true if \c *this is approximately equal to \a other, within the precision - * determined by \a prec. - * - * \sa MatrixBase::isApprox() */ - bool isApprox(const Quaternion& other, typename NumTraits::Real prec = precision()) const - { return m_coeffs.isApprox(other.m_coeffs, prec); } - -protected: - Coefficients m_coeffs; -}; - -/** \ingroup Geometry_Module - * single precision quaternion type */ -typedef Quaternion Quaternionf; -/** \ingroup Geometry_Module - * double precision quaternion type */ -typedef Quaternion Quaterniond; - -// Generic Quaternion * Quaternion product -template inline Quaternion -ei_quaternion_product(const Quaternion& a, const Quaternion& b) -{ - return Quaternion - ( - a.w() * b.w() - a.x() * b.x() - a.y() * b.y() - a.z() * b.z(), - a.w() * b.x() + a.x() * b.w() + a.y() * b.z() - a.z() * b.y(), - a.w() * b.y() + a.y() * b.w() + a.z() * b.x() - a.x() * b.z(), - a.w() * b.z() + a.z() * b.w() + a.x() * b.y() - a.y() * b.x() - ); -} - -/** \returns the concatenation of two rotations as a quaternion-quaternion product */ -template -inline Quaternion Quaternion::operator* (const Quaternion& other) const -{ - return ei_quaternion_product(*this,other); -} - -/** \sa operator*(Quaternion) */ -template -inline Quaternion& Quaternion::operator*= (const Quaternion& other) -{ - return (*this = *this * other); -} - -/** Rotation of a vector by a quaternion. - * \remarks If the quaternion is used to rotate several points (>1) - * then it is much more efficient to first convert it to a 3x3 Matrix. - * Comparison of the operation cost for n transformations: - * - Quaternion: 30n - * - Via a Matrix3: 24 + 15n - */ -template -template -inline typename Quaternion::Vector3 -Quaternion::operator* (const MatrixBase& v) const -{ - // Note that this algorithm comes from the optimization by hand - // of the conversion to a Matrix followed by a Matrix/Vector product. - // It appears to be much faster than the common algorithm found - // in the litterature (30 versus 39 flops). It also requires two - // Vector3 as temporaries. - Vector3 uv; - uv = 2 * this->vec().cross(v); - return v + this->w() * uv + this->vec().cross(uv); -} - -template -inline Quaternion& Quaternion::operator=(const Quaternion& other) -{ - m_coeffs = other.m_coeffs; - return *this; -} - -/** Set \c *this from an angle-axis \a aa and returns a reference to \c *this - */ -template -inline Quaternion& Quaternion::operator=(const AngleAxisType& aa) -{ - Scalar ha = Scalar(0.5)*aa.angle(); // Scalar(0.5) to suppress precision loss warnings - this->w() = ei_cos(ha); - this->vec() = ei_sin(ha) * aa.axis(); - return *this; -} - -/** Set \c *this from the expression \a xpr: - * - if \a xpr is a 4x1 vector, then \a xpr is assumed to be a quaternion - * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix - * and \a xpr is converted to a quaternion - */ -template -template -inline Quaternion& Quaternion::operator=(const MatrixBase& xpr) -{ - ei_quaternion_assign_impl::run(*this, xpr.derived()); - return *this; -} - -/** Convert the quaternion to a 3x3 rotation matrix */ -template -inline typename Quaternion::Matrix3 -Quaternion::toRotationMatrix(void) const -{ - // NOTE if inlined, then gcc 4.2 and 4.4 get rid of the temporary (not gcc 4.3 !!) - // if not inlined then the cost of the return by value is huge ~ +35%, - // however, not inlining this function is an order of magnitude slower, so - // it has to be inlined, and so the return by value is not an issue - Matrix3 res; - - const Scalar tx = Scalar(2)*this->x(); - const Scalar ty = Scalar(2)*this->y(); - const Scalar tz = Scalar(2)*this->z(); - const Scalar twx = tx*this->w(); - const Scalar twy = ty*this->w(); - const Scalar twz = tz*this->w(); - const Scalar txx = tx*this->x(); - const Scalar txy = ty*this->x(); - const Scalar txz = tz*this->x(); - const Scalar tyy = ty*this->y(); - const Scalar tyz = tz*this->y(); - const Scalar tzz = tz*this->z(); - - res.coeffRef(0,0) = Scalar(1)-(tyy+tzz); - res.coeffRef(0,1) = txy-twz; - res.coeffRef(0,2) = txz+twy; - res.coeffRef(1,0) = txy+twz; - res.coeffRef(1,1) = Scalar(1)-(txx+tzz); - res.coeffRef(1,2) = tyz-twx; - res.coeffRef(2,0) = txz-twy; - res.coeffRef(2,1) = tyz+twx; - res.coeffRef(2,2) = Scalar(1)-(txx+tyy); - - return res; -} - -/** Sets *this to be a quaternion representing a rotation sending the vector \a a to the vector \a b. - * - * \returns a reference to *this. - * - * Note that the two input vectors do \b not have to be normalized. - */ -template -template -inline Quaternion& Quaternion::setFromTwoVectors(const MatrixBase& a, const MatrixBase& b) -{ - Vector3 v0 = a.normalized(); - Vector3 v1 = b.normalized(); - Scalar c = v0.eigen2_dot(v1); - - // if dot == 1, vectors are the same - if (ei_isApprox(c,Scalar(1))) - { - // set to identity - this->w() = 1; this->vec().setZero(); - return *this; - } - // if dot == -1, vectors are opposites - if (ei_isApprox(c,Scalar(-1))) - { - this->vec() = v0.unitOrthogonal(); - this->w() = 0; - return *this; - } - - Vector3 axis = v0.cross(v1); - Scalar s = ei_sqrt((Scalar(1)+c)*Scalar(2)); - Scalar invs = Scalar(1)/s; - this->vec() = axis * invs; - this->w() = s * Scalar(0.5); - - return *this; -} - -/** \returns the multiplicative inverse of \c *this - * Note that in most cases, i.e., if you simply want the opposite rotation, - * and/or the quaternion is normalized, then it is enough to use the conjugate. - * - * \sa Quaternion::conjugate() - */ -template -inline Quaternion Quaternion::inverse() const -{ - // FIXME should this function be called multiplicativeInverse and conjugate() be called inverse() or opposite() ?? - Scalar n2 = this->squaredNorm(); - if (n2 > 0) - return Quaternion(conjugate().coeffs() / n2); - else - { - // return an invalid result to flag the error - return Quaternion(Coefficients::Zero()); - } -} - -/** \returns the conjugate of the \c *this which is equal to the multiplicative inverse - * if the quaternion is normalized. - * The conjugate of a quaternion represents the opposite rotation. - * - * \sa Quaternion::inverse() - */ -template -inline Quaternion Quaternion::conjugate() const -{ - return Quaternion(this->w(),-this->x(),-this->y(),-this->z()); -} - -/** \returns the angle (in radian) between two rotations - * \sa eigen2_dot() - */ -template -inline Scalar Quaternion::angularDistance(const Quaternion& other) const -{ - double d = ei_abs(this->eigen2_dot(other)); - if (d>=1.0) - return 0; - return Scalar(2) * std::acos(d); -} - -/** \returns the spherical linear interpolation between the two quaternions - * \c *this and \a other at the parameter \a t - */ -template -Quaternion Quaternion::slerp(Scalar t, const Quaternion& other) const -{ - static const Scalar one = Scalar(1) - machine_epsilon(); - Scalar d = this->eigen2_dot(other); - Scalar absD = ei_abs(d); - - Scalar scale0; - Scalar scale1; - - if (absD>=one) - { - scale0 = Scalar(1) - t; - scale1 = t; - } - else - { - // theta is the angle between the 2 quaternions - Scalar theta = std::acos(absD); - Scalar sinTheta = ei_sin(theta); - - scale0 = ei_sin( ( Scalar(1) - t ) * theta) / sinTheta; - scale1 = ei_sin( ( t * theta) ) / sinTheta; - if (d<0) - scale1 = -scale1; - } - - return Quaternion(scale0 * coeffs() + scale1 * other.coeffs()); -} - -// set from a rotation matrix -template -struct ei_quaternion_assign_impl -{ - typedef typename Other::Scalar Scalar; - static inline void run(Quaternion& q, const Other& mat) - { - // This algorithm comes from "Quaternion Calculus and Fast Animation", - // Ken Shoemake, 1987 SIGGRAPH course notes - Scalar t = mat.trace(); - if (t > 0) - { - t = ei_sqrt(t + Scalar(1.0)); - q.w() = Scalar(0.5)*t; - t = Scalar(0.5)/t; - q.x() = (mat.coeff(2,1) - mat.coeff(1,2)) * t; - q.y() = (mat.coeff(0,2) - mat.coeff(2,0)) * t; - q.z() = (mat.coeff(1,0) - mat.coeff(0,1)) * t; - } - else - { - int i = 0; - if (mat.coeff(1,1) > mat.coeff(0,0)) - i = 1; - if (mat.coeff(2,2) > mat.coeff(i,i)) - i = 2; - int j = (i+1)%3; - int k = (j+1)%3; - - t = ei_sqrt(mat.coeff(i,i)-mat.coeff(j,j)-mat.coeff(k,k) + Scalar(1.0)); - q.coeffs().coeffRef(i) = Scalar(0.5) * t; - t = Scalar(0.5)/t; - q.w() = (mat.coeff(k,j)-mat.coeff(j,k))*t; - q.coeffs().coeffRef(j) = (mat.coeff(j,i)+mat.coeff(i,j))*t; - q.coeffs().coeffRef(k) = (mat.coeff(k,i)+mat.coeff(i,k))*t; - } - } -}; - -// set from a vector of coefficients assumed to be a quaternion -template -struct ei_quaternion_assign_impl -{ - typedef typename Other::Scalar Scalar; - static inline void run(Quaternion& q, const Other& vec) - { - q.coeffs() = vec; - } -}; - -} // end namespace Eigen -- cgit v1.2.3