From f0238cfb6997c4acfc2bd200de7295f3fa36968f Mon Sep 17 00:00:00 2001 From: Stanislaw Halik Date: Sun, 3 Mar 2019 21:09:10 +0100 Subject: don't index Eigen --- eigen/Eigen/src/Geometry/OrthoMethods.h | 234 -------------------------------- 1 file changed, 234 deletions(-) delete mode 100644 eigen/Eigen/src/Geometry/OrthoMethods.h (limited to 'eigen/Eigen/src/Geometry/OrthoMethods.h') diff --git a/eigen/Eigen/src/Geometry/OrthoMethods.h b/eigen/Eigen/src/Geometry/OrthoMethods.h deleted file mode 100644 index a035e63..0000000 --- a/eigen/Eigen/src/Geometry/OrthoMethods.h +++ /dev/null @@ -1,234 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2009 Gael Guennebaud -// Copyright (C) 2006-2008 Benoit Jacob -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#ifndef EIGEN_ORTHOMETHODS_H -#define EIGEN_ORTHOMETHODS_H - -namespace Eigen { - -/** \geometry_module \ingroup Geometry_Module - * - * \returns the cross product of \c *this and \a other - * - * Here is a very good explanation of cross-product: http://xkcd.com/199/ - * - * With complex numbers, the cross product is implemented as - * \f$ (\mathbf{a}+i\mathbf{b}) \times (\mathbf{c}+i\mathbf{d}) = (\mathbf{a} \times \mathbf{c} - \mathbf{b} \times \mathbf{d}) - i(\mathbf{a} \times \mathbf{d} - \mathbf{b} \times \mathbf{c})\f$ - * - * \sa MatrixBase::cross3() - */ -template -template -#ifndef EIGEN_PARSED_BY_DOXYGEN -EIGEN_DEVICE_FUNC inline typename MatrixBase::template cross_product_return_type::type -#else -inline typename MatrixBase::PlainObject -#endif -MatrixBase::cross(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,3) - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) - - // Note that there is no need for an expression here since the compiler - // optimize such a small temporary very well (even within a complex expression) - typename internal::nested_eval::type lhs(derived()); - typename internal::nested_eval::type rhs(other.derived()); - return typename cross_product_return_type::type( - numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), - numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), - numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)) - ); -} - -namespace internal { - -template< int Arch,typename VectorLhs,typename VectorRhs, - typename Scalar = typename VectorLhs::Scalar, - bool Vectorizable = bool((VectorLhs::Flags&VectorRhs::Flags)&PacketAccessBit)> -struct cross3_impl { - EIGEN_DEVICE_FUNC static inline typename internal::plain_matrix_type::type - run(const VectorLhs& lhs, const VectorRhs& rhs) - { - return typename internal::plain_matrix_type::type( - numext::conj(lhs.coeff(1) * rhs.coeff(2) - lhs.coeff(2) * rhs.coeff(1)), - numext::conj(lhs.coeff(2) * rhs.coeff(0) - lhs.coeff(0) * rhs.coeff(2)), - numext::conj(lhs.coeff(0) * rhs.coeff(1) - lhs.coeff(1) * rhs.coeff(0)), - 0 - ); - } -}; - -} - -/** \geometry_module \ingroup Geometry_Module - * - * \returns the cross product of \c *this and \a other using only the x, y, and z coefficients - * - * The size of \c *this and \a other must be four. This function is especially useful - * when using 4D vectors instead of 3D ones to get advantage of SSE/AltiVec vectorization. - * - * \sa MatrixBase::cross() - */ -template -template -EIGEN_DEVICE_FUNC inline typename MatrixBase::PlainObject -MatrixBase::cross3(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Derived,4) - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,4) - - typedef typename internal::nested_eval::type DerivedNested; - typedef typename internal::nested_eval::type OtherDerivedNested; - DerivedNested lhs(derived()); - OtherDerivedNested rhs(other.derived()); - - return internal::cross3_impl::type, - typename internal::remove_all::type>::run(lhs,rhs); -} - -/** \geometry_module \ingroup Geometry_Module - * - * \returns a matrix expression of the cross product of each column or row - * of the referenced expression with the \a other vector. - * - * The referenced matrix must have one dimension equal to 3. - * The result matrix has the same dimensions than the referenced one. - * - * \sa MatrixBase::cross() */ -template -template -EIGEN_DEVICE_FUNC -const typename VectorwiseOp::CrossReturnType -VectorwiseOp::cross(const MatrixBase& other) const -{ - EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(OtherDerived,3) - EIGEN_STATIC_ASSERT((internal::is_same::value), - YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) - - typename internal::nested_eval::type mat(_expression()); - typename internal::nested_eval::type vec(other.derived()); - - CrossReturnType res(_expression().rows(),_expression().cols()); - if(Direction==Vertical) - { - eigen_assert(CrossReturnType::RowsAtCompileTime==3 && "the matrix must have exactly 3 rows"); - res.row(0) = (mat.row(1) * vec.coeff(2) - mat.row(2) * vec.coeff(1)).conjugate(); - res.row(1) = (mat.row(2) * vec.coeff(0) - mat.row(0) * vec.coeff(2)).conjugate(); - res.row(2) = (mat.row(0) * vec.coeff(1) - mat.row(1) * vec.coeff(0)).conjugate(); - } - else - { - eigen_assert(CrossReturnType::ColsAtCompileTime==3 && "the matrix must have exactly 3 columns"); - res.col(0) = (mat.col(1) * vec.coeff(2) - mat.col(2) * vec.coeff(1)).conjugate(); - res.col(1) = (mat.col(2) * vec.coeff(0) - mat.col(0) * vec.coeff(2)).conjugate(); - res.col(2) = (mat.col(0) * vec.coeff(1) - mat.col(1) * vec.coeff(0)).conjugate(); - } - return res; -} - -namespace internal { - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - typedef typename traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - typedef Matrix Vector2; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { - VectorType perp = VectorType::Zero(src.size()); - Index maxi = 0; - Index sndi = 0; - src.cwiseAbs().maxCoeff(&maxi); - if (maxi==0) - sndi = 1; - RealScalar invnm = RealScalar(1)/(Vector2() << src.coeff(sndi),src.coeff(maxi)).finished().norm(); - perp.coeffRef(maxi) = -numext::conj(src.coeff(sndi)) * invnm; - perp.coeffRef(sndi) = numext::conj(src.coeff(maxi)) * invnm; - - return perp; - } -}; - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - typedef typename traits::Scalar Scalar; - typedef typename NumTraits::Real RealScalar; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { - VectorType perp; - /* Let us compute the crossed product of *this with a vector - * that is not too close to being colinear to *this. - */ - - /* unless the x and y coords are both close to zero, we can - * simply take ( -y, x, 0 ) and normalize it. - */ - if((!isMuchSmallerThan(src.x(), src.z())) - || (!isMuchSmallerThan(src.y(), src.z()))) - { - RealScalar invnm = RealScalar(1)/src.template head<2>().norm(); - perp.coeffRef(0) = -numext::conj(src.y())*invnm; - perp.coeffRef(1) = numext::conj(src.x())*invnm; - perp.coeffRef(2) = 0; - } - /* if both x and y are close to zero, then the vector is close - * to the z-axis, so it's far from colinear to the x-axis for instance. - * So we take the crossed product with (1,0,0) and normalize it. - */ - else - { - RealScalar invnm = RealScalar(1)/src.template tail<2>().norm(); - perp.coeffRef(0) = 0; - perp.coeffRef(1) = -numext::conj(src.z())*invnm; - perp.coeffRef(2) = numext::conj(src.y())*invnm; - } - - return perp; - } -}; - -template -struct unitOrthogonal_selector -{ - typedef typename plain_matrix_type::type VectorType; - EIGEN_DEVICE_FUNC - static inline VectorType run(const Derived& src) - { return VectorType(-numext::conj(src.y()), numext::conj(src.x())).normalized(); } -}; - -} // end namespace internal - -/** \geometry_module \ingroup Geometry_Module - * - * \returns a unit vector which is orthogonal to \c *this - * - * The size of \c *this must be at least 2. If the size is exactly 2, - * then the returned vector is a counter clock wise rotation of \c *this, i.e., (-y,x).normalized(). - * - * \sa cross() - */ -template -EIGEN_DEVICE_FUNC typename MatrixBase::PlainObject -MatrixBase::unitOrthogonal() const -{ - EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) - return internal::unitOrthogonal_selector::run(derived()); -} - -} // end namespace Eigen - -#endif // EIGEN_ORTHOMETHODS_H -- cgit v1.2.3