From f0238cfb6997c4acfc2bd200de7295f3fa36968f Mon Sep 17 00:00:00 2001 From: Stanislaw Halik Date: Sun, 3 Mar 2019 21:09:10 +0100 Subject: don't index Eigen --- eigen/test/sparse_block.cpp | 317 -------------------------------------------- 1 file changed, 317 deletions(-) delete mode 100644 eigen/test/sparse_block.cpp (limited to 'eigen/test/sparse_block.cpp') diff --git a/eigen/test/sparse_block.cpp b/eigen/test/sparse_block.cpp deleted file mode 100644 index 2a0b3b6..0000000 --- a/eigen/test/sparse_block.cpp +++ /dev/null @@ -1,317 +0,0 @@ -// This file is part of Eigen, a lightweight C++ template library -// for linear algebra. -// -// Copyright (C) 2008-2015 Gael Guennebaud -// -// This Source Code Form is subject to the terms of the Mozilla -// Public License v. 2.0. If a copy of the MPL was not distributed -// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - -#include "sparse.h" - -template -typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==RowMajorBit, typename T::RowXpr>::type -innervec(T& A, Index i) -{ - return A.row(i); -} - -template -typename Eigen::internal::enable_if<(T::Flags&RowMajorBit)==0, typename T::ColXpr>::type -innervec(T& A, Index i) -{ - return A.col(i); -} - -template void sparse_block(const SparseMatrixType& ref) -{ - const Index rows = ref.rows(); - const Index cols = ref.cols(); - const Index inner = ref.innerSize(); - const Index outer = ref.outerSize(); - - typedef typename SparseMatrixType::Scalar Scalar; - typedef typename SparseMatrixType::StorageIndex StorageIndex; - - double density = (std::max)(8./(rows*cols), 0.01); - typedef Matrix DenseMatrix; - typedef Matrix DenseVector; - typedef Matrix RowDenseVector; - typedef SparseVector SparseVectorType; - - Scalar s1 = internal::random(); - { - SparseMatrixType m(rows, cols); - DenseMatrix refMat = DenseMatrix::Zero(rows, cols); - initSparse(density, refMat, m); - - VERIFY_IS_APPROX(m, refMat); - - // test InnerIterators and Block expressions - for (int t=0; t<10; ++t) - { - Index j = internal::random(0,cols-2); - Index i = internal::random(0,rows-2); - Index w = internal::random(1,cols-j); - Index h = internal::random(1,rows-i); - - VERIFY_IS_APPROX(m.block(i,j,h,w), refMat.block(i,j,h,w)); - for(Index c=0; c(density, refMat2, m2); - Index j0 = internal::random(0,outer-1); - Index j1 = internal::random(0,outer-1); - Index r0 = internal::random(0,rows-1); - Index c0 = internal::random(0,cols-1); - - VERIFY_IS_APPROX(m2.innerVector(j0), innervec(refMat2,j0)); - VERIFY_IS_APPROX(m2.innerVector(j0)+m2.innerVector(j1), innervec(refMat2,j0)+innervec(refMat2,j1)); - - m2.innerVector(j0) *= Scalar(2); - innervec(refMat2,j0) *= Scalar(2); - VERIFY_IS_APPROX(m2, refMat2); - - m2.row(r0) *= Scalar(3); - refMat2.row(r0) *= Scalar(3); - VERIFY_IS_APPROX(m2, refMat2); - - m2.col(c0) *= Scalar(4); - refMat2.col(c0) *= Scalar(4); - VERIFY_IS_APPROX(m2, refMat2); - - m2.row(r0) /= Scalar(3); - refMat2.row(r0) /= Scalar(3); - VERIFY_IS_APPROX(m2, refMat2); - - m2.col(c0) /= Scalar(4); - refMat2.col(c0) /= Scalar(4); - VERIFY_IS_APPROX(m2, refMat2); - - SparseVectorType v1; - VERIFY_IS_APPROX(v1 = m2.col(c0) * 4, refMat2.col(c0)*4); - VERIFY_IS_APPROX(v1 = m2.row(r0) * 4, refMat2.row(r0).transpose()*4); - - SparseMatrixType m3(rows,cols); - m3.reserve(VectorXi::Constant(outer,int(inner/2))); - for(Index j=0; j(k+1); - for(Index j=0; j<(std::min)(outer, inner); ++j) - { - VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); - if(j>0) - VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); - } - m3.makeCompressed(); - for(Index j=0; j<(std::min)(outer, inner); ++j) - { - VERIFY(j==numext::real(m3.innerVector(j).nonZeros())); - if(j>0) - VERIFY(j==numext::real(m3.innerVector(j).lastCoeff())); - } - - VERIFY(m3.innerVector(j0).nonZeros() == m3.transpose().innerVector(j0).nonZeros()); - -// m2.innerVector(j0) = 2*m2.innerVector(j1); -// refMat2.col(j0) = 2*refMat2.col(j1); -// VERIFY_IS_APPROX(m2, refMat2); - } - - // test innerVectors() - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); - SparseMatrixType m2(rows, cols); - initSparse(density, refMat2, m2); - if(internal::random(0,1)>0.5f) m2.makeCompressed(); - Index j0 = internal::random(0,outer-2); - Index j1 = internal::random(0,outer-2); - Index n0 = internal::random(1,outer-(std::max)(j0,j1)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(j0,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.innerVectors(j0,n0), refMat2.block(0,j0,rows,n0)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.middleRows(j0,n0)+refMat2.middleRows(j1,n0)); - else - VERIFY_IS_APPROX(m2.innerVectors(j0,n0)+m2.innerVectors(j1,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - - VERIFY_IS_APPROX(m2, refMat2); - - VERIFY(m2.innerVectors(j0,n0).nonZeros() == m2.transpose().innerVectors(j0,n0).nonZeros()); - - m2.innerVectors(j0,n0) = m2.innerVectors(j0,n0) + m2.innerVectors(j1,n0); - if(SparseMatrixType::IsRowMajor) - refMat2.middleRows(j0,n0) = (refMat2.middleRows(j0,n0) + refMat2.middleRows(j1,n0)).eval(); - else - refMat2.middleCols(j0,n0) = (refMat2.middleCols(j0,n0) + refMat2.middleCols(j1,n0)).eval(); - - VERIFY_IS_APPROX(m2, refMat2); - } - - // test generic blocks - { - DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); - SparseMatrixType m2(rows, cols); - initSparse(density, refMat2, m2); - Index j0 = internal::random(0,outer-2); - Index j1 = internal::random(0,outer-2); - Index n0 = internal::random(1,outer-(std::max)(j0,j1)); - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.block(j0,0,n0,cols), refMat2.block(j0,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.block(0,j0,rows,n0), refMat2.block(0,j0,rows,n0)); - - if(SparseMatrixType::IsRowMajor) - VERIFY_IS_APPROX(m2.block(j0,0,n0,cols)+m2.block(j1,0,n0,cols), - refMat2.block(j0,0,n0,cols)+refMat2.block(j1,0,n0,cols)); - else - VERIFY_IS_APPROX(m2.block(0,j0,rows,n0)+m2.block(0,j1,rows,n0), - refMat2.block(0,j0,rows,n0)+refMat2.block(0,j1,rows,n0)); - - Index i = internal::random(0,m2.outerSize()-1); - if(SparseMatrixType::IsRowMajor) { - m2.innerVector(i) = m2.innerVector(i) * s1; - refMat2.row(i) = refMat2.row(i) * s1; - VERIFY_IS_APPROX(m2,refMat2); - } else { - m2.innerVector(i) = m2.innerVector(i) * s1; - refMat2.col(i) = refMat2.col(i) * s1; - VERIFY_IS_APPROX(m2,refMat2); - } - - Index r0 = internal::random(0,rows-2); - Index c0 = internal::random(0,cols-2); - Index r1 = internal::random(1,rows-r0); - Index c1 = internal::random(1,cols-c0); - - VERIFY_IS_APPROX(DenseVector(m2.col(c0)), refMat2.col(c0)); - VERIFY_IS_APPROX(m2.col(c0), refMat2.col(c0)); - - VERIFY_IS_APPROX(RowDenseVector(m2.row(r0)), refMat2.row(r0)); - VERIFY_IS_APPROX(m2.row(r0), refMat2.row(r0)); - - VERIFY_IS_APPROX(m2.block(r0,c0,r1,c1), refMat2.block(r0,c0,r1,c1)); - VERIFY_IS_APPROX((2*m2).block(r0,c0,r1,c1), (2*refMat2).block(r0,c0,r1,c1)); - - if(m2.nonZeros()>0) - { - VERIFY_IS_APPROX(m2, refMat2); - SparseMatrixType m3(rows, cols); - DenseMatrix refMat3(rows, cols); refMat3.setZero(); - Index n = internal::random(1,10); - for(Index k=0; k(0,outer-1); - Index o2 = internal::random(0,outer-1); - if(SparseMatrixType::IsRowMajor) - { - m3.innerVector(o1) = m2.row(o2); - refMat3.row(o1) = refMat2.row(o2); - } - else - { - m3.innerVector(o1) = m2.col(o2); - refMat3.col(o1) = refMat2.col(o2); - } - if(internal::random()) - m3.makeCompressed(); - } - if(m3.nonZeros()>0) - VERIFY_IS_APPROX(m3, refMat3); - } - } -} - -void test_sparse_block() -{ - for(int i = 0; i < g_repeat; i++) { - int r = Eigen::internal::random(1,200), c = Eigen::internal::random(1,200); - if(Eigen::internal::random(0,4) == 0) { - r = c; // check square matrices in 25% of tries - } - EIGEN_UNUSED_VARIABLE(r+c); - CALL_SUBTEST_1(( sparse_block(SparseMatrix(1, 1)) )); - CALL_SUBTEST_1(( sparse_block(SparseMatrix(8, 8)) )); - CALL_SUBTEST_1(( sparse_block(SparseMatrix(r, c)) )); - CALL_SUBTEST_2(( sparse_block(SparseMatrix, ColMajor>(r, c)) )); - CALL_SUBTEST_2(( sparse_block(SparseMatrix, RowMajor>(r, c)) )); - - CALL_SUBTEST_3(( sparse_block(SparseMatrix(r, c)) )); - CALL_SUBTEST_3(( sparse_block(SparseMatrix(r, c)) )); - - r = Eigen::internal::random(1,100); - c = Eigen::internal::random(1,100); - if(Eigen::internal::random(0,4) == 0) { - r = c; // check square matrices in 25% of tries - } - - CALL_SUBTEST_4(( sparse_block(SparseMatrix(short(r), short(c))) )); - CALL_SUBTEST_4(( sparse_block(SparseMatrix(short(r), short(c))) )); - } -} -- cgit v1.2.3