summaryrefslogtreecommitdiffhomepage
path: root/ftnoir_tracker_pt/point_tracker.cpp
diff options
context:
space:
mode:
authorStanislaw Halik <sthalik@misaki.pl>2015-10-30 07:37:41 +0100
committerStanislaw Halik <sthalik@misaki.pl>2015-10-30 08:39:32 +0100
commitaa066bdd4622d4f6824fee864f6be6806813f04d (patch)
tree3df328b8b364cba2373a85827191b259bd78d546 /ftnoir_tracker_pt/point_tracker.cpp
parentd6a54431d178632a2bf466c9904f74abd143afe6 (diff)
move to subdirectory-based build system
Closes #224
Diffstat (limited to 'ftnoir_tracker_pt/point_tracker.cpp')
-rw-r--r--ftnoir_tracker_pt/point_tracker.cpp267
1 files changed, 0 insertions, 267 deletions
diff --git a/ftnoir_tracker_pt/point_tracker.cpp b/ftnoir_tracker_pt/point_tracker.cpp
deleted file mode 100644
index 924b75de..00000000
--- a/ftnoir_tracker_pt/point_tracker.cpp
+++ /dev/null
@@ -1,267 +0,0 @@
-/* Copyright (c) 2012 Patrick Ruoff
- *
- * Permission to use, copy, modify, and/or distribute this software for any
- * purpose with or without fee is hereby granted, provided that the above
- * copyright notice and this permission notice appear in all copies.
- */
-
-#include "point_tracker.h"
-
-#include <vector>
-#include <algorithm>
-#include <cmath>
-
-#include <QDebug>
-
-const float PI = 3.14159265358979323846f;
-
-static void get_row(const cv::Matx33f& m, int i, cv::Vec3f& v)
-{
- v[0] = m(i,0);
- v[1] = m(i,1);
- v[2] = m(i,2);
-}
-
-static void set_row(cv::Matx33f& m, int i, const cv::Vec3f& v)
-{
- m(i,0) = v[0];
- m(i,1) = v[1];
- m(i,2) = v[2];
-}
-
-static bool d_vals_sort(const std::pair<float,int> a, const std::pair<float,int> b)
-{
- return a.first < b.first;
-}
-
-void PointModel::get_d_order(const std::vector<cv::Vec2f>& points, int d_order[], cv::Vec2f d) const
-{
- // fit line to orthographically projected points
- std::vector<std::pair<float,int>> d_vals;
- // get sort indices with respect to d scalar product
- for (unsigned i = 0; i<points.size(); ++i)
- d_vals.push_back(std::pair<float, int>(d.dot(points[i]), i));
-
- std::sort(d_vals.begin(),
- d_vals.end(),
- d_vals_sort
- );
-
- for (unsigned i = 0; i<points.size(); ++i)
- d_order[i] = d_vals[i].second;
-}
-
-
-PointTracker::PointTracker() : init_phase(true)
-{
-}
-
-PointTracker::PointOrder PointTracker::find_correspondences_previous(const std::vector<cv::Vec2f>& points, const PointModel& model, float f)
-{
- PointTracker::PointOrder p;
- p.points[0] = project(cv::Vec3f(0,0,0), f);
- p.points[1] = project(model.M01, f);
- p.points[2] = project(model.M02, f);
-
- // set correspondences by minimum distance to projected model point
- bool point_taken[PointModel::N_POINTS];
- for (int i=0; i<PointModel::N_POINTS; ++i)
- point_taken[i] = false;
-
- for (int i=0; i<PointModel::N_POINTS; ++i)
- {
- float min_sdist = 0;
- int min_idx = 0;
- // find closest point to projected model point i
- for (int j=0; j<PointModel::N_POINTS; ++j)
- {
- cv::Vec2f d = p.points[i]-points[j];
- float sdist = d.dot(d);
- if (sdist < min_sdist || j==0)
- {
- min_idx = j;
- min_sdist = sdist;
- }
- }
- // if one point is closest to more than one model point, fallback
- if (point_taken[min_idx])
- {
- init_phase = true;
- return find_correspondences(points, model);
- }
- point_taken[min_idx] = true;
- p.points[i] = points[min_idx];
- }
- return p;
-}
-
-void PointTracker::track(const std::vector<cv::Vec2f>& points, const PointModel& model, float f, bool dynamic_pose, int init_phase_timeout)
-{
- PointOrder order;
-
- if (t.elapsed_ms() > init_phase_timeout)
- {
- t.start();
- init_phase = true;
- }
-
- if (!dynamic_pose || init_phase)
- order = find_correspondences(points, model);
- else
- order = find_correspondences_previous(points, model, f);
-
- POSIT(model, order, f);
- init_phase = false;
- t.start();
-}
-
-PointTracker::PointOrder PointTracker::find_correspondences(const std::vector<cv::Vec2f>& points, const PointModel& model)
-{
- // We do a simple freetrack-like sorting in the init phase...
- // sort points
- int point_d_order[PointModel::N_POINTS];
- int model_d_order[PointModel::N_POINTS];
- cv::Vec2f d(model.M01[0]-model.M02[0], model.M01[1]-model.M02[1]);
- model.get_d_order(points, point_d_order, d);
- // calculate d and d_order for simple freetrack-like point correspondence
- model.get_d_order(std::vector<cv::Vec2f> {
- cv::Vec2f{0,0},
- cv::Vec2f(model.M01[0], model.M01[1]),
- cv::Vec2f(model.M02[0], model.M02[1])
- },
- model_d_order,
- d);
- // set correspondences
- PointOrder p;
- for (int i=0; i<PointModel::N_POINTS; ++i)
- p.points[model_d_order[i]] = points[point_d_order[i]];
-
- return p;
-}
-
-int PointTracker::POSIT(const PointModel& model, const PointOrder& order_, float focal_length)
-{
- // POSIT algorithm for coplanar points as presented in
- // [Denis Oberkampf, Daniel F. DeMenthon, Larry S. Davis: "Iterative Pose Estimation Using Coplanar Feature Points"]
- // we use the same notation as in the paper here
-
- // The expected rotation used for resolving the ambiguity in POSIT:
- // In every iteration step the rotation closer to R_expected is taken
- cv::Matx33f R_expected = cv::Matx33f::eye();
-
- // initial pose = last (predicted) pose
- cv::Vec3f k;
- get_row(R_expected, 2, k);
- float Z0 = 1000.f;
-
- float old_epsilon_1 = 0;
- float old_epsilon_2 = 0;
- float epsilon_1 = 1;
- float epsilon_2 = 1;
-
- cv::Vec3f I0, J0;
- cv::Vec2f I0_coeff, J0_coeff;
-
- cv::Vec3f I_1, J_1, I_2, J_2;
- cv::Matx33f R_1, R_2;
- cv::Matx33f* R_current;
-
- const int MAX_ITER = 100;
- const float EPS_THRESHOLD = 1e-4;
-
- const cv::Vec2f* order = order_.points;
-
- int i=1;
- for (; i<MAX_ITER; ++i)
- {
- epsilon_1 = k.dot(model.M01)/Z0;
- epsilon_2 = k.dot(model.M02)/Z0;
-
- // vector of scalar products <I0, M0i> and <J0, M0i>
- cv::Vec2f I0_M0i(order[1][0]*(1.0 + epsilon_1) - order[0][0],
- order[2][0]*(1.0 + epsilon_2) - order[0][0]);
- cv::Vec2f J0_M0i(order[1][1]*(1.0 + epsilon_1) - order[0][1],
- order[2][1]*(1.0 + epsilon_2) - order[0][1]);
-
- // construct projection of I, J onto M0i plane: I0 and J0
- I0_coeff = model.P * I0_M0i;
- J0_coeff = model.P * J0_M0i;
- I0 = I0_coeff[0]*model.M01 + I0_coeff[1]*model.M02;
- J0 = J0_coeff[0]*model.M01 + J0_coeff[1]*model.M02;
-
- // calculate u component of I, J
- float II0 = I0.dot(I0);
- float IJ0 = I0.dot(J0);
- float JJ0 = J0.dot(J0);
- float rho, theta;
- if (JJ0 == II0) {
- rho = std::sqrt(std::abs(2*IJ0));
- theta = -PI/4;
- if (IJ0<0) theta *= -1;
- }
- else {
- rho = sqrt(sqrt( (JJ0-II0)*(JJ0-II0) + 4*IJ0*IJ0 ));
- theta = atan( -2*IJ0 / (JJ0-II0) );
- if (JJ0 - II0 < 0) theta += PI;
- theta /= 2;
- }
-
- // construct the two solutions
- I_1 = I0 + rho*cos(theta)*model.u;
- I_2 = I0 - rho*cos(theta)*model.u;
-
- J_1 = J0 + rho*sin(theta)*model.u;
- J_2 = J0 - rho*sin(theta)*model.u;
-
- float norm_const = 1.0/cv::norm(I_1); // all have the same norm
-
- // create rotation matrices
- I_1 *= norm_const; J_1 *= norm_const;
- I_2 *= norm_const; J_2 *= norm_const;
-
- set_row(R_1, 0, I_1);
- set_row(R_1, 1, J_1);
- set_row(R_1, 2, I_1.cross(J_1));
-
- set_row(R_2, 0, I_2);
- set_row(R_2, 1, J_2);
- set_row(R_2, 2, I_2.cross(J_2));
-
- // the single translation solution
- Z0 = norm_const * focal_length;
-
- // pick the rotation solution closer to the expected one
- // in simple metric d(A,B) = || I - A * B^T ||
- float R_1_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_1.t());
- float R_2_deviation = cv::norm(cv::Matx33f::eye() - R_expected * R_2.t());
-
- if (R_1_deviation < R_2_deviation)
- R_current = &R_1;
- else
- R_current = &R_2;
-
- get_row(*R_current, 2, k);
-
- // check for convergence condition
- if (std::abs(epsilon_1 - old_epsilon_1) + std::abs(epsilon_2 - old_epsilon_2) < EPS_THRESHOLD)
- break;
- old_epsilon_1 = epsilon_1;
- old_epsilon_2 = epsilon_2;
- }
-
- // apply results
- X_CM.R = *R_current;
- X_CM.t[0] = order[0][0] * Z0/focal_length;
- X_CM.t[1] = order[0][1] * Z0/focal_length;
- X_CM.t[2] = Z0;
-
- //qDebug() << "iter:" << i;
-
- return i;
-}
-
-cv::Vec2f PointTracker::project(const cv::Vec3f& v_M, float f)
-{
- cv::Vec3f v_C = X_CM * v_M;
- return cv::Vec2f(f*v_C[0]/v_C[2], f*v_C[1]/v_C[2]);
-}