summaryrefslogtreecommitdiffhomepage
path: root/tracker-neuralnet/model_adapters.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'tracker-neuralnet/model_adapters.cpp')
-rw-r--r--tracker-neuralnet/model_adapters.cpp122
1 files changed, 41 insertions, 81 deletions
diff --git a/tracker-neuralnet/model_adapters.cpp b/tracker-neuralnet/model_adapters.cpp
index a8580a89..f53478af 100644
--- a/tracker-neuralnet/model_adapters.cpp
+++ b/tracker-neuralnet/model_adapters.cpp
@@ -192,11 +192,15 @@ PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&ses
if (session_.GetOutputCount() < 2)
throw std::runtime_error("Invalid Model: must have at least two outputs");
- // WARNING UB .. but still ...
- // If the model was saved without meta data, it seems the version field is uninitialized.
- // In that case reading from it is UB. However, in practice we will just get some arbitrary number
- // which is hopefully different from the numbers used by models where the version is set.
- if (model_version_ != 2 && model_version_ != 3)
+ // WARNING: Messy model compatibility issues!
+ // When reading the initial model release, it did not have the version field set.
+ // Reading it here will result in some unspecified value. It's probably UB due to
+ // reading uninitialized memory. But there is little choice.
+ // Now, detection of this old version is messy ... we have to guess based on the
+ // number we get. Getting an uninitialized value matching a valid version is unlikely.
+ // But the real problem is that this line must be updated whenever we want to bump the
+ // version number!!
+ if (model_version_ <= 0 || model_version_ > 4)
model_version_ = 1;
const cv::Size input_image_shape = get_input_image_shape(session_);
@@ -224,10 +228,9 @@ PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&ses
{ "box", TensorSpec{ { 1, 4}, &output_box_[0], output_box_.rows } },
{ "rotaxis_scales_tril", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }},
{ "rotaxis_std", TensorSpec{ {1, 3, 3}, output_rotaxis_scales_tril_.val, 9 }}, // TODO: Delete when old models aren't used any more
- { "eyes", TensorSpec{ { 1, 2}, output_eyes_.val, output_eyes_.rows }},
- { "pos_size_std", TensorSpec{ {1, 3}, output_coord_scales_.val, output_coord_scales_.rows}},
- { "pos_size_scales", TensorSpec{ {1, 3}, output_coord_scales_.val, output_coord_scales_.rows}},
- //{ "box_std", TensorSpec{ {1, 4}, output_box_scales_.val, output_box_scales_ .rows}}
+ { "pos_size_std", TensorSpec{ {1, 3}, output_coord_scales_std_.val, output_coord_scales_std_.rows}},
+ { "pos_size_scales", TensorSpec{ {1, 3}, output_coord_scales_std_.val, output_coord_scales_std_.rows}},
+ { "pos_size_scales_tril", TensorSpec{ {1, 3, 3}, output_coord_scales_tril_.val, 9}}
};
qDebug() << "Pose model inputs (" << session_.GetInputCount() << ")";
@@ -236,17 +239,17 @@ PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&ses
output_c_names_.resize(session_.GetOutputCount());
for (size_t i=0; i<session_.GetOutputCount(); ++i)
{
- std::string name = get_network_output_name(i);
+ const std::string name = get_network_output_name(i);
const auto& output_info = session_.GetOutputTypeInfo(i);
const auto& onnx_tensor_spec = output_info.GetTensorTypeAndShapeInfo();
- auto my_tensor_spec = understood_outputs.find(name);
+ auto my_tensor_spec_it = understood_outputs.find(name);
qDebug() << "\t" << name.c_str() << " (" << onnx_tensor_spec.GetShape() << ") dtype: " << onnx_tensor_spec.GetElementType() << " " <<
- (my_tensor_spec != understood_outputs.end() ? "ok" : "unknown");
+ (my_tensor_spec_it != understood_outputs.end() ? "ok" : "unknown");
- if (my_tensor_spec != understood_outputs.end())
+ if (my_tensor_spec_it != understood_outputs.end())
{
- TensorSpec& t = my_tensor_spec->second;
+ TensorSpec& t = my_tensor_spec_it->second;
if (onnx_tensor_spec.GetShape() != t.shape ||
onnx_tensor_spec.GetElementType() != Ort::TypeToTensorType<float>::type)
throw std::runtime_error("Invalid output tensor spec for "s + name);
@@ -266,29 +269,9 @@ PoseEstimator::PoseEstimator(Ort::MemoryInfo &allocator_info, Ort::Session &&ses
has_uncertainty_ = understood_outputs.at("rotaxis_scales_tril").available ||
understood_outputs.at("rotaxis_std").available;
has_uncertainty_ &= understood_outputs.at("pos_size_std").available ||
- understood_outputs.at("pos_size_scales").available;
- //has_uncertainty_ &= understood_outputs.at("box_std").available;
- has_eye_closed_detection_ = understood_outputs.at("eyes").available;
-
- // FIXME: Recurrent states
-
- // size_t num_regular_outputs = 2;
-
- // num_recurrent_states_ = session_.GetInputCount()-1;
- // if (session_.GetOutputCount()-num_regular_outputs != num_recurrent_states_)
- // throw std::runtime_error("Invalid Model: After regular inputs and outputs the model must have equal number of inputs and outputs for tensors holding hidden states of recurrent layers.");
-
- // // Create tensors for recurrent state
- // for (size_t i = 0; i < num_recurrent_states_; ++i)
- // {
- // const auto& input_info = session_.GetInputTypeInfo(1+i);
- // const auto& output_info = session_.GetOutputTypeInfo(num_regular_outputs+i);
- // if (input_info.GetTensorTypeAndShapeInfo().GetShape() !=
- // output_info.GetTensorTypeAndShapeInfo().GetShape())
- // throw std::runtime_error("Invalid Model: Tensors for recurrent hidden states should have same shape on intput and output");
- // input_val_.push_back(create_tensor(input_info, allocator_));
- // output_val_.push_back(create_tensor(output_info, allocator_));
- // }
+ understood_outputs.at("pos_size_scales").available ||
+ understood_outputs.at("pos_size_scales_tril").available;
+ pos_scale_uncertainty_is_matrix_ = understood_outputs.at("pos_size_scales_tril").available;
input_names_.resize(session_.GetInputCount());
input_c_names_.resize(session_.GetInputCount());
@@ -348,38 +331,32 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
return {};
}
- for (size_t i = 0; i<num_recurrent_states_; ++i)
- {
- // Next step, the current output becomes the input.
- // Thus we realize the recurrent connection.
- // Only swaps the internal pointers. There is no copy of data.
- std::swap(
- output_val_[output_val_.size()-num_recurrent_states_+i],
- input_val_[input_val_.size()-num_recurrent_states_+i]);
- }
-
- // FIXME: Execution time fluctuates wildly. 19 to 26 msec. Why?
- // The instructions are always the same. Maybe a memory allocation
- // issue. The ONNX api suggests that tensor are allocated in an
- // arena. Does that matter? Maybe the issue is something else?
-
last_inference_time_ = t.elapsed_ms();
// Perform coordinate transformation.
// From patch-local normalized in [-1,1] to
- // frame unnormalized pixel coordinatesettings.
+ // frame unnormalized pixel.
+
+ cv::Matx33f center_size_cov_tril = {};
+ if (has_uncertainty_)
+ {
+ if (pos_scale_uncertainty_is_matrix_)
+ {
+ center_size_cov_tril = output_coord_scales_tril_;
+ }
+ else
+ {
+ center_size_cov_tril(0,0) = output_coord_scales_std_[0];
+ center_size_cov_tril(1,1) = output_coord_scales_std_[1];
+ center_size_cov_tril(2,2) = output_coord_scales_std_[2];
+ }
+ center_size_cov_tril *= patch_size*0.5f;
+ }
const cv::Point2f center = patch_center +
(0.5f*patch_size)*cv::Point2f{output_coord_[0], output_coord_[1]};
-
- cv::Point2f center_stddev = {
- (0.5f*patch_size)*output_coord_scales_[0],
- (0.5f*patch_size)*output_coord_scales_[1] };
-
const float size = patch_size*0.5f*output_coord_[2];
- float size_stddev = patch_size*0.5f*output_coord_scales_[2];
-
// Following Eigen which uses quat components in the order w, x, y, z.
// As does OpenCV
cv::Quatf rotation = {
@@ -392,6 +369,9 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
assert(output_rotaxis_scales_tril_(0, 1) == 0);
assert(output_rotaxis_scales_tril_(0, 2) == 0);
assert(output_rotaxis_scales_tril_(1, 2) == 0);
+ assert(center_size_cov_tril(0, 1) == 0);
+ assert(center_size_cov_tril(0, 2) == 0);
+ assert(center_size_cov_tril(1, 2) == 0);
cv::Matx33f rotaxis_scales_tril = output_rotaxis_scales_tril_;
@@ -407,29 +387,9 @@ std::optional<PoseEstimator::Face> PoseEstimator::run(
0.5f*patch_size*(output_box_[2]-output_box_[0]),
0.5f*patch_size*(output_box_[3]-output_box_[1])
};
- // const RoiCorners outbox = {
- // patch_center + 0.5f*patch_size*cv::Point2f{output_box_[0], output_box_[1]},
- // patch_center + 0.5f*patch_size*cv::Point2f{output_box_[2], output_box_[3]}
- // };
- // RoiCorners outbox_stddev = {
- // 0.5f*patch_size*cv::Point2f{output_box_scales_[0], output_box_scales_[1]},
- // 0.5f*patch_size*cv::Point2f{output_box_scales_[2], output_box_scales_[3]}
- // };
-
- // Because the model is sensitive to closing eyes we increase the uncertainty
- // a lot to make the subsequent filtering smooth the output more. This should suppress
- // "twitching" when the user blinks.
- if (has_eye_closed_detection_)
- {
- const float eye_open = std::min(output_eyes_[0], output_eyes_[1]);
- const float increase_factor = 1.f + 10.f * std::pow(1. - eye_open,4.f);
- rotaxis_scales_tril *= increase_factor;
- size_stddev *= increase_factor;
- center_stddev *= increase_factor;
- }
return std::optional<Face>({
- rotation, rotaxis_scales_tril, outbox, center, center_stddev, size, size_stddev
+ rotation, rotaxis_scales_tril, outbox, center, size, center_size_cov_tril
});
}