#include "euler.hpp" #include namespace euler { euler_t OTR_COMPAT_EXPORT rmat_to_euler(const rmat& R) { using std::atan2; using std::sqrt; const double cy = sqrt(R(2,2)*R(2, 2) + R(2, 1)*R(2, 1)); const bool large_enough = cy > 1e-10; if (large_enough) return euler_t(atan2(-R(1, 0), R(0, 0)), atan2(R(2, 0), cy), atan2(-R(2, 1), R(2, 2))); else return euler_t(atan2(R(0, 1), R(1, 1)), atan2(R(2, 0), cy), 0); } // tait-bryan angles, not euler rmat OTR_COMPAT_EXPORT euler_to_rmat(const euler_t& input) { const double H = -input(0); const double P = -input(1); const double B = -input(2); using std::cos; using std::sin; const auto c1 = cos(H); const auto s1 = sin(H); const auto c2 = cos(P); const auto s2 = sin(P); const auto c3 = cos(B); const auto s3 = sin(B); return rmat( // z c1 * c2, c1 * s2 * s3 - c3 * s1, s1 * s3 + c1 * c3 * s2, // y c2 * s1, c1 * c3 + s1 * s2 * s3, c3 * s1 * s2 - c1 * s3, // x -s2, c2 * s3, c2 * c3 ); } // https://en.wikipedia.org/wiki/Davenport_chained_rotations#Tait.E2.80.93Bryan_chained_rotations void OTR_COMPAT_EXPORT tait_bryan_to_matrices(const euler_t& input, rmat& r_roll, rmat& r_pitch, rmat& r_yaw) { using std::cos; using std::sin; { const double phi = -input(2); const double sin_phi = sin(phi); const double cos_phi = cos(phi); r_roll = rmat(1, 0, 0, 0, cos_phi, -sin_phi, 0, sin_phi, cos_phi); } { const double theta = input(1); const double sin_theta = sin(theta); const double cos_theta = cos(theta); r_pitch = rmat(cos_theta, 0, -sin_theta, 0, 1, 0, sin_theta, 0, cos_theta); } { const double psi = -input(0); const double sin_psi = sin(psi); const double cos_psi = cos(psi); r_yaw = rmat(cos_psi, -sin_psi, 0, sin_psi, cos_psi, 0, 0, 0, 1); } } // from http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/ Quat matrix_to_quat(const rmat& M) { Quat q(1, 0, 0, 0); using std::sqrt; double trace = M(0, 0) + M(1, 1) + M(2, 2); // I removed + 1.0; see discussion with Ethan if( trace > 0 ) {// I changed M_EPSILON to 0 double s = .5 / std::sqrt(trace + 1); q.w() = .25 / s; q.x() = ( M(2, 1) - M(1, 2) ) * s; q.y() = ( M(0, 2) - M(2, 0) ) * s; q.z() = ( M(1, 0) - M(0, 1) ) * s; } else { if ( M(0, 0) > M(1, 1) && M(0, 0) > M(2, 2) ) { double s = 2.0 * sqrt( 1.0 + M(0, 0) - M(1, 1) - M(2, 2)); q.w() = (M(2, 1) - M(1, 2) ) / s; q.x() = .25 * s; q.y() = (M(0, 1) + M(1, 0) ) / s; q.z() = (M(0, 2) + M(2, 0) ) / s; } else if (M(1, 1) > M(2, 2)) { double s = 2.0 * sqrt( 1.0 + M(1, 1) - M(0, 0) - M(2, 2)); q.w() = (M(0, 2) - M(2, 0) ) / s; q.x() = (M(0, 1) + M(1, 0) ) / s; q.y() = .25 * s; q.z() = (M(1, 2) + M(2, 1) ) / s; } else { double s = 2.0 * sqrt( 1.0 + M(2, 2) - M(0, 0) - M(1, 1) ); q.w() = (M(1, 0) - M(0, 1) ) / s; q.x() = (M(0, 2) + M(2, 0) ) / s; q.y() = (M(1, 2) + M(2, 1) ) / s; q.z() = .25 * s; } } return q; } } // end ns euler