/* Copyright (c) 2012 Patrick Ruoff * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ #include "point_extractor.h" #include using namespace cv; using namespace std; PointExtractor::PointExtractor(){ //if (!AllocConsole()){} //else SetConsoleTitle("debug"); //freopen("CON", "w", stdout); //freopen("CON", "w", stderr); } // ---------------------------------------------------------------------------- std::vector PointExtractor::extract_points(Mat& frame) { const int W = frame.cols; const int H = frame.rows; // convert to grayscale Mat frame_gray; cvtColor(frame, frame_gray, cv::COLOR_RGB2GRAY); int min_size = s.min_point_size; int max_size = s.max_point_size; unsigned int region_size_min = 3.14*min_size*min_size/4.0; unsigned int region_size_max = 3.14*max_size*max_size/4.0; // testing indicates threshold difference of 45 from lowest to highest // that's applicable to poor lighting conditions. static constexpr int diff = 20; static constexpr int steps = 10; static constexpr int successes = 8; int thres = s.threshold; struct blob { double max_radius; std::vector pos; std::vector confids; cv::Vec2d effective_pos() const { double x = 0; double y = 0; double norm = 0; for (unsigned i = 0; i < pos.size(); i++) { x += pos[i][0] * confids[i]; y += pos[i][1] * confids[i]; norm += confids[i]; } cv::Vec2d ret(x, y); ret *= 1./norm; //qDebug() << "ret" << ret[0] << ret[1] << "norm" << norm << "count" << pos.size(); return ret; } }; struct simple_blob { double radius; cv::Vec2d pos; double confid; bool taken; simple_blob(double radius, const cv::Vec2d& pos, double confid) : radius(radius), pos(pos), confid(confid), taken(false) { //qDebug() << "radius" << radius << "pos" << pos[0] << pos[1] << "confid" << confid; } bool inside(const simple_blob& other) { cv::Vec2d tmp = pos - other.pos; double p = sqrt(1e-4 + tmp.dot(tmp)); return p < radius; } static std::vector merge(std::vector& blobs) { std::vector ret; for (unsigned i = 0; i < blobs.size(); i++) { auto& b = blobs[i]; if (b.taken) continue; b.taken = true; blob b_; b_.pos.push_back(b.pos); b_.confids.push_back(b.confid); b_.max_radius = b.radius; for (unsigned j = i+1; j < blobs.size(); j++) { auto& b2 = blobs[j]; if (b2.taken) continue; if (b.inside(b2) || b2.inside(b)) { b2.taken = true; b_.pos.push_back(b2.pos); b_.confids.push_back(b2.confid); b_.max_radius = std::max(b_.max_radius, b2.radius); } } if (b_.pos.size() >= successes) ret.push_back(b_); } return ret; } }; // mask for everything that passes the threshold (or: the upper threshold of the hysteresis) Mat frame_bin = cv::Mat::zeros(H, W, CV_8U); const int min = std::max(0, thres - diff/2); const int max = std::min(255, thres + diff/2); const int step = std::max(1, diff / steps); std::vector blobs; // this code is based on OpenCV SimpleBlobDetector for (int i = min; i < max; i += step) { Mat frame_bin_; threshold(frame_gray, frame_bin_, i, 255, THRESH_BINARY); frame_bin.setTo(170, frame_bin_); std::vector> contours; cv::findContours(frame_bin_, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE); for (auto& c : contours) { auto m = cv::moments(cv::Mat(c)); const double area = m.m00; if (area == 0.) continue; cv::Vec2d pos(m.m10 / m.m00, m.m01 / m.m00); if (area < region_size_min || area > region_size_max) continue; double radius = 0; for (auto& k : c) { cv::Vec2d pos_(k.x, k.y); cv::Vec2d tmp = pos_ - pos; radius = std::max(radius, sqrt(1e-2 + tmp.dot(tmp))); } double confid = 1; { double denominator = std::sqrt(std::pow(2 * m.mu11, 2) + std::pow(m.mu20 - m.mu02, 2)); const double eps = 1e-2; if (denominator > eps) { double cosmin = (m.mu20 - m.mu02) / denominator; double sinmin = 2 * m.mu11 / denominator; double cosmax = -cosmin; double sinmax = -sinmin; double imin = 0.5 * (m.mu20 + m.mu02) - 0.5 * (m.mu20 - m.mu02) * cosmin - m.mu11 * sinmin; double imax = 0.5 * (m.mu20 + m.mu02) - 0.5 * (m.mu20 - m.mu02) * cosmax - m.mu11 * sinmax; confid = imin / imax; } } blobs.push_back(simple_blob(radius, pos, confid)); } } // clear old points points.clear(); for (auto& b : simple_blob::merge(blobs)) { auto pos = b.effective_pos(); Vec2f p((pos[0] - W/2)/W, -(pos[1] - H/2)/W); points.push_back(p); } // draw output image vector channels; channels.push_back(frame_gray + frame_bin); channels.push_back(frame_gray - frame_bin); channels.push_back(frame_gray - frame_bin); merge(channels, frame); return points; }