/* Copyright (c) 2012-2018 Stanislaw Halik * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. */ /* * this file appeared originally in facetracknoir, was rewritten completely * following opentrack fork. * * originally written by Wim Vriend. */ #include "compat/sleep.hpp" #include "compat/math.hpp" #include "compat/meta.hpp" #include "compat/macros.hpp" #include "pipeline.hpp" #include "logic/shortcuts.h" #include #include #include #ifdef _WIN32 # include # include #endif namespace pipeline_impl { reltrans::reltrans() = default; void reltrans::on_center() { interp_pos = { 0, 0, 0 }; in_zone = false; moving_to_reltans = false; } euler_t reltrans::rotate(const rmat& R, const euler_t& in, vec3_bool disable) const { enum { tb_Z, tb_X, tb_Y }; // TY is really yaw axis. need swapping accordingly. // sign changes are due to right-vs-left handedness of coordinate system used const euler_t ret = R * euler_t(in(TZ), -in(TX), -in(TY)); euler_t output; if (disable(TZ)) output(TZ) = in(TZ); else output(TZ) = ret(tb_Z); if (disable(TY)) output(TY) = in(TY); else output(TY) = -ret(tb_Y); if (disable(TX)) output(TX) = in(TX); else output(TX) = -ret(tb_X); return output; } Pose reltrans::apply_pipeline(reltrans_state state, const Pose& value, const vec6_bool& disable, bool neck_enable, int neck_z) { euler_t rel((const double*)value); if (state != reltrans_disabled) { bool in_zone_ = true; if (state == reltrans_non_center) { const bool looking_down = value(Pitch) < 20; in_zone_ = looking_down ? std::fabs(value(Yaw)) > 35 : std::fabs(value(Yaw)) > 65; } if (!moving_to_reltans && in_zone != in_zone_) { //qDebug() << "reltrans-interp: START" << tcomp_in_zone_; moving_to_reltans = true; interp_timer.start(); interp_phase_timer.start(); RC_stage = 0; } in_zone = in_zone_; // only when looking behind or downward if (in_zone) { constexpr double d2r = M_PI / 180; const rmat R = euler_to_rmat( euler_t(value(Yaw) * d2r * !disable(Yaw), value(Pitch) * d2r * !disable(Pitch), value(Roll) * d2r * !disable(Roll))); rel = rotate(R, rel, &disable[TX]); // dynamic neck if (neck_enable && (state != reltrans_non_center || !in_zone)) { const euler_t neck = apply_neck(R, -neck_z, disable(TZ)); for (unsigned k = 0; k < 3; k++) rel(k) += neck(k); } } if (moving_to_reltans) { const double dt = interp_timer.elapsed_seconds(); static constexpr double RC_stages[] = { 2, 1, .5, .1, .05 }; static constexpr double RC_time_deltas[] = { 1, .25, .25, 2 }; interp_timer.start(); if (RC_stage + 1 < std::size(RC_stages) && interp_phase_timer.elapsed_seconds() > RC_time_deltas[RC_stage]) { RC_stage++; interp_phase_timer.start(); } const double RC = RC_stages[RC_stage]; const double alpha = dt/(dt+RC); constexpr double eps = .01; interp_pos = interp_pos * (1-alpha) + rel * alpha; const euler_t tmp = rel - interp_pos; rel = interp_pos; const double delta = std::fabs(tmp(0)) + std::fabs(tmp(1)) + std::fabs(tmp(2)); //qDebug() << "reltrans-interp: delta" << delta << "phase" << RC_phase; if (delta < eps) { //qDebug() << "reltrans-interp: STOP"; moving_to_reltans = false; } } else interp_pos = rel; } else { moving_to_reltans = false; in_zone = false; } return { rel(TX), rel(TY), rel(TZ), value(Yaw), value(Pitch), value(Roll), }; } euler_t reltrans::apply_neck(const rmat& R, int nz, bool disable_tz) const { euler_t neck; neck = rotate(R, { 0, 0, nz }, {}); neck(TZ) = neck(TZ) - nz; if (disable_tz) neck(TZ) = 0; return neck; } pipeline::pipeline(Mappings& m, runtime_libraries& libs, event_handler& ev, TrackLogger& logger) : m(m), ev(ev), libs(libs), logger(logger) { } pipeline::~pipeline() { requestInterruption(); wait(); } double pipeline::map(double pos, Map& axis) { bool altp = (pos < 0) && axis.opts.altp; axis.spline_main.set_tracking_active(!altp); axis.spline_alt.set_tracking_active(altp); auto& fc = altp ? axis.spline_alt : axis.spline_main; return double(fc.get_value(pos)); } //#define NO_NAN_CHECK //#define DEBUG_TIMINGS #ifndef NO_NAN_CHECK template static inline bool is_nan(const dmat& r) { for (unsigned i = 0; i < u; i++) for (unsigned j = 0; j < w; j++) { int val = std::fpclassify(r(i, j)); if (val == FP_NAN || val == FP_INFINITE) return true; } return false; } static cc_noinline void emit_nan_check_msg(const char* text, const char* fun, int line) { eval_once( qDebug() << "nan check failed" << "for:" << text << "function:" << fun << "line:" << line ); } template static cc_noinline bool maybe_nan(const char* text, const char* fun, int line, const xs&... vals) { bool ret = (is_nan(vals) || ... || false); if (ret) emit_nan_check_msg(text, fun, line); return ret; } #define nan_check(...) \ do \ { \ if (likely(!maybe_nan(#__VA_ARGS__, cc_function_name, __LINE__, __VA_ARGS__))) \ (void)0; \ else \ goto error; \ } \ while (false) #else # define nan_check(...) (void)(__VA_ARGS__) #endif bool pipeline::maybe_enable_center_on_tracking_started() { if (!tracking_started) { for (int i = 0; i < 6; i++) if (std::fabs(newpose(i)) != 0) { tracking_started = true; break; } if (tracking_started && s.center_at_startup) { set_center(true); return true; } } return false; } void pipeline::set_center_pose(const Pose& value, bool own_center_logic) { if (b.get(f_center | f_held_center)) { set_center(false); if (libs.pFilter) libs.pFilter->center(); if (own_center_logic) center = {}; else center = value; } } Pose pipeline::clamp_value(Pose value) const { // hatire, udp, and freepie trackers can mess up here for (unsigned i = 3; i < 6; i++) { value(i) = std::fmod(value(i), 360); const double x = value(i); if (std::fabs(x) - 1e-2 > 180) value(i) = std::fmod(x + std::copysign(180, x), 360) - std::copysign(180, x); value(i) = clamp(x, -180, 180); } return value; } Pose pipeline::apply_center(Pose value) const { // this is incorrect but people like it value = value - center; for (int i = 0; i < 6; i++) // don't invert after reltrans // inverting here doesn't break centering if (m(i).opts.invert) value(i) = -value(i); return value; } std::tuple pipeline::get_selected_axis_values(const Pose& newpose) const { Pose value; vec6_bool disabled; for (int i = 0; i < 6; i++) { const Map& axis = m(i); const int k = axis.opts.src; disabled(i) = k == 6; if (k < 0 || k >= 6) value(i) = 0; else value(i) = newpose(k); } return { newpose, value, disabled }; } Pose pipeline::maybe_apply_filter(const Pose& value) const { Pose tmp(value); // nan/inf values will corrupt filter internal state if (libs.pFilter) libs.pFilter->filter(value, tmp); return tmp; } Pose pipeline::apply_zero_pos(Pose value) const { for (int i = 0; i < 6; i++) value(i) += m(i).opts.zero * (m(i).opts.invert ? -1 : 1); return value; } Pose pipeline::apply_reltrans(Pose value, vec6_bool disabled, bool centerp) { if (centerp) rel.on_center(); value = rel.apply_pipeline(s.reltrans_mode, value, { !!s.reltrans_disable_tx, !!s.reltrans_disable_ty, !!s.reltrans_disable_tz, !!s.reltrans_disable_src_yaw, !!s.reltrans_disable_src_pitch, !!s.reltrans_disable_src_roll, }, s.neck_enable, s.neck_z); // reltrans will move it for (unsigned k = 0; k < 6; k++) if (disabled(k)) value(k) = 0; return value; } void pipeline::logic() { using namespace euler; using EV = event_handler::event_ordinal; logger.write_dt(); logger.reset_dt(); // we must center prior to getting data from the tracker const bool center_ordered = b.get(f_center | f_held_center) && tracking_started; const bool own_center_logic = center_ordered && libs.pTracker->center(); const bool hold_ordered = b.get(f_enabled_p) ^ b.get(f_enabled_h); { Pose tmp; libs.pTracker->data(tmp); ev.run_events(EV::ev_raw, tmp); newpose = tmp; } auto [raw, value, disabled] = get_selected_axis_values(newpose); logger.write_pose(raw); // raw nan_check(newpose, raw, value); value = clamp_value(value); { maybe_enable_center_on_tracking_started(); set_center_pose(value, own_center_logic); value = apply_center(value); // "corrected" - after various transformations to account for camera position logger.write_pose(value); } { ev.run_events(EV::ev_before_filter, value); // we must proceed with all the filtering since the filter // needs fresh values to prevent deconvergence if (center_ordered) (void)maybe_apply_filter(value); else value = maybe_apply_filter(value); nan_check(value); logger.write_pose(value); // "filtered" } { ev.run_events(EV::ev_before_mapping, value); // CAVEAT rotation only, due to reltrans for (int i = 3; i < 6; i++) value(i) = map(value(i), m(i)); } value = apply_reltrans(value, disabled, center_ordered); { // CAVEAT translation only, due to tcomp for (int i = 0; i < 3; i++) value(i) = map(value(i), m(i)); nan_check(value); } if (!hold_ordered) goto ok; error: { QMutexLocker foo(&mtx); value = output_pose; raw = raw_6dof; // for widget last value display for (int i = 0; i < 6; i++) (void)map(raw_6dof(i), m(i)); } ok: set_center(false); if (b.get(f_zero)) for (int i = 0; i < 6; i++) value(i) = 0; value = apply_zero_pos(value); ev.run_events(EV::ev_finished, value); libs.pProtocol->pose(value); QMutexLocker foo(&mtx); output_pose = value; raw_6dof = raw; logger.write_pose(value); // "mapped" logger.reset_dt(); logger.next_line(); } void pipeline::run() { #if defined _WIN32 const MMRESULT mmres = timeBeginPeriod(1); #endif setPriority(QThread::HighPriority); setPriority(QThread::HighestPriority); { static const char* const posechannels[6] = { "TX", "TY", "TZ", "Yaw", "Pitch", "Roll" }; static const char* const datachannels[5] = { "dt", "raw", "corrected", "filtered", "mapped" }; logger.write(datachannels[0]); char buffer[16]; for (unsigned j = 1; j < 5; ++j) // NOLINT(modernize-loop-convert) { for (unsigned i = 0; i < 6; ++i) // NOLINT(modernize-loop-convert) { std::sprintf(buffer, "%s%s", datachannels[j], posechannels[i]); logger.write(buffer); } } logger.next_line(); } logger.reset_dt(); t.start(); while (!isInterruptionRequested()) { logic(); constexpr ns const_sleep_ms(ms{4}); const ns elapsed_nsecs = t.elapsed(); t.start(); if (std::chrono::abs(backlog_time) > secs(3)) { qDebug() << "tracker: backlog interval overflow" << ms{backlog_time}.count() << "ms"; backlog_time = {}; } backlog_time += ns{elapsed_nsecs - const_sleep_ms}; const int sleep_time_ms = (int)( clamp(ms{const_sleep_ms - backlog_time}, ms{0}, ms{10}).count() - .45f ); #ifdef DEBUG_TIMINGS { static int cnt; static Timer tt; if (tt.elapsed_seconds() >= 1) { tt.start(); qDebug() << cnt << "Hz" << "sleepy time" << sleep_time_ms << "diff" << ms{elapsed_nsecs}.count() - ms{const_sleep_ms}.count() << "backlog" << ms{backlog_time}.count(); cnt = 0; } cnt++; } #endif portable::sleep(sleep_time_ms); } // filter may inhibit exact origin Pose p; libs.pProtocol->pose(p); for (int i = 0; i < 6; i++) { m(i).spline_main.set_tracking_active(false); m(i).spline_alt.set_tracking_active(false); } #if defined _WIN32 if (mmres == 0) (void) timeEndPeriod(1); #endif } void pipeline::raw_and_mapped_pose(double* mapped, double* raw) const { QMutexLocker foo(&mtx); for (int i = 0; i < 6; i++) { raw[i] = raw_6dof(i); mapped[i] = output_pose(i); } } void pipeline::set_center(bool x) { b.set(f_center, x); } void pipeline::set_held_center(bool value) { b.set(f_held_center, value); } void pipeline::set_enabled(bool value) { b.set(f_enabled_h, value); } void pipeline::set_zero(bool value) { b.set(f_zero, value); } void pipeline::toggle_zero() { b.negate(f_zero); } void pipeline::toggle_enabled() { b.negate(f_enabled_p); } void bits::set(bit_flags flag, bool val) { spinlock_guard l(lock); flags &= ~flag; if (val) flags |= flag; } void bits::negate(bit_flags flag) { spinlock_guard l(lock); flags ^= flag; } bool bits::get(bit_flags flag) { spinlock_guard l(lock); return !!(flags & flag); } bits::bits() { set(f_center, false); set(f_held_center, false); set(f_enabled_p, true); set(f_enabled_h, true); set(f_zero, false); } } // ns pipeline_impl