/* ======================================================================== Meow - A Fast Non-cryptographic Hash (C) Copyright 2018-2019 by Molly Rocket, Inc. (https://mollyrocket.com) See https://mollyrocket.com/meowhash for details. ======================================================================== zlib License (C) Copyright 2018-2019 Molly Rocket, Inc. This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. ======================================================================== FAQ Q: What is it? A: Meow is a 128-bit Level 3 hash taking 128 bytes of seed. It operates at very high speeds on x64 processors, and potentially other processors that provide accelerated AES instructions. Q: What is it GOOD for? A: Quickly hashing any amount of data for comparison purposes such as block deduplication or change detection. It is fast on all buffer sizes, and can generally be used anywhere you need fast Level 3 hashing without worrying about how big or small the inputs tend to be. However, substantial speed improvements could be made over Meow if you either a) know you are always hashing an exact, small number of bytes, or b) can always supply a small number of bytes in a buffer padded to some fixed multiple of 16. Q: What is it BAD for? A: Anything requiring Level 4 or Level 5 security guarantees (see http://nohatcoder.dk/2019-05-19-1.html#level3). Also, note that Meow is a new hash and has not had the extensive community cryptanalysis necessary to ensure that it is not breakable down to a lower level of hash, so you must do your due diligence in deciding when and where to use Meow instead of a slower but more extensively studied existing hash. We have tried to design it to provide Level 3 security, but the possibility of the hash being broken in the future always exists. Q: Why is it called the "Meow hash"? A: It is named after a character in Meow the Infinite (https://meowtheinfinite.com) Q: Who wrote it? A: The final Meow Hash was created as a collaboration between JACOB CHRISTIAN MUNCH-ANDERSEN (https://twitter.com/nohatcoder) and CASEY MURATORI (https://caseymuratori.com). Casey wrote the original implementation for use in processing large-footprint assets for the game 1935 (https://molly1935.com). Jacob was the first to analyze that implementation and determine the adversarial bit strength, which was weaker than they would have liked. Following that, the two collaborated to figure out how the hash could be strengthened without reducing Meow's 16 bytes/cycle maximum theoretical throughput. Jacob created the hash candidates and Casey did the performance validation. After a long and exhaustive effort, Jacob found the unaligned aes/add/xor formulation that forms the current Meow hash core. A number of valuable additions to Meow Hash were also contributed by other great folks along the way: JEFF ROBERTS (https://radgametools.com) provided a super slick way to handle the residual end-of-buffer bytes that dramatically improved Meow's small hash performance. MARTINS MOZEIKO (https://matrins.ninja) ported Meow to ARM and ANSI-C, and added the proper preprocessor dressing for clean compilation on a variety of compiler configurations. FABIAN GIESEN (https://fgiesen.wordpress.com) analyzed many performance oddities that came up during development, and helped get the benchmarking working properly across a number of platforms. ARAS PRANCKEVICIUS (https://aras-p.info) provided the allocation shim for compilation on Mac OS X. ======================================================================== */ // // IMPORTANT(casey): We are currently evaluating this hash construction as // the final one for Meow Hash. If you find a way to produce collisions // that should not be possible with a Level 3 hash, find significant performance // problems, or see any bugs in this version, please be sure to report them // to the Meow Hash GitHub as soon as possible. We would like to know as // much as we can about the robustness and performance before committing to // it as the final construction. // #ifdef _MSC_VER #pragma system_header #else #pragma GCC system_header #endif #if !defined(MEOW_HASH_X64_AESNI_H) #define MEOW_HASH_VERSION 5 #define MEOW_HASH_VERSION_NAME "0.5/calico" #if !defined(meow_u8) #if _MSC_VER #if !defined(__clang__) #define INSTRUCTION_REORDER_BARRIER _ReadWriteBarrier() #else #endif #include #else #include #endif #define meow_u8 char unsigned #define meow_u64 long long unsigned #define meow_u128 __m128i #if __x86_64__ || _M_AMD64 #define meow_umm long long unsigned #define MeowU64From(A, I) (_mm_extract_epi64((A), (I))) #elif __i386__ || _M_IX86 #define meow_umm int unsigned #define MeowU64From(A, I) (*(meow_u64 *)&(A)) #else #error Cannot determine architecture to use! #endif #define MeowU32From(A, I) (_mm_extract_epi32((A), (I))) #define MeowHashesAreEqual(A, B) (_mm_movemask_epi8(_mm_cmpeq_epi8((A), (B))) == 0xFFFF) #if !defined INSTRUCTION_REORDER_BARRIER #define INSTRUCTION_REORDER_BARRIER #endif #if !defined MEOW_PAGESIZE #define MEOW_PAGESIZE 4096 #endif #if !defined MEOW_PREFETCH #define MEOW_PREFETCH 4096 #endif #if !defined MEOW_PREFETCH_LIMIT #define MEOW_PREFETCH_LIMIT 0x3ff #endif #endif #define prefetcht0(A) _mm_prefetch((char *)(A), _MM_HINT_T0) #define movdqu(A, B) A = _mm_loadu_si128((__m128i *)(B)) #define movdqu_mem(A, B) _mm_storeu_si128((__m128i *)(A), B) #define movq(A, B) A = _mm_set_epi64x(0, B); #define aesdec(A, B) A = _mm_aesdec_si128(A, B) #define pshufb(A, B) A = _mm_shuffle_epi8(A, B) #define pxor(A, B) A = _mm_xor_si128(A, B) #define paddq(A, B) A = _mm_add_epi64(A, B) #define pand(A, B) A = _mm_and_si128(A, B) #define palignr(A, B, i) A = _mm_alignr_epi8(A, B, i) #define pxor_clear(A, B) A = _mm_setzero_si128(); // NOTE(casey): pxor_clear is a nonsense thing that is only here because compilers don't detect xor(a, a) is clearing a :( #define MEOW_MIX_REG(r1, r2, r3, r4, r5, i1, i2, i3, i4) \ aesdec(r1, r2); \ INSTRUCTION_REORDER_BARRIER; \ paddq(r3, i1); \ pxor(r2, i2); \ aesdec(r2, r4); \ INSTRUCTION_REORDER_BARRIER; \ paddq(r5, i3); \ pxor(r4, i4); #define MEOW_MIX(r1, r2, r3, r4, r5, ptr) \ MEOW_MIX_REG(r1, r2, r3, r4, r5, _mm_loadu_si128( (__m128i *) ((ptr) + 15) ), _mm_loadu_si128( (__m128i *) ((ptr) + 0) ), _mm_loadu_si128( (__m128i *) ((ptr) + 1) ), _mm_loadu_si128( (__m128i *) ((ptr) + 16) )) #define MEOW_SHUFFLE(r1, r2, r3, r4, r5, r6) \ aesdec(r1, r4); \ paddq(r2, r5); \ pxor(r4, r6); \ aesdec(r4, r2); \ paddq(r5, r6); \ pxor(r2, r3) #if MEOW_DUMP struct meow_dump { meow_u128 xmm[8]; void *Ptr; char const *Title; }; extern "C" meow_dump *MeowDumpTo; meow_dump *MeowDumpTo; #define MEOW_DUMP_STATE(T, xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, ptr) \ if(MeowDumpTo) \ { \ MeowDumpTo->xmm[0] = xmm0; \ MeowDumpTo->xmm[1] = xmm1; \ MeowDumpTo->xmm[2] = xmm2; \ MeowDumpTo->xmm[3] = xmm3; \ MeowDumpTo->xmm[4] = xmm4; \ MeowDumpTo->xmm[5] = xmm5; \ MeowDumpTo->xmm[6] = xmm6; \ MeowDumpTo->xmm[7] = xmm7; \ MeowDumpTo->Ptr = ptr; \ MeowDumpTo->Title = T; \ ++MeowDumpTo; \ } #else #define MEOW_DUMP_STATE(...) #endif static meow_u8 MeowShiftAdjust[32] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}; static meow_u8 MeowMaskLen[32] = {255,255,255,255, 255,255,255,255, 255,255,255,255, 255,255,255,255, 0,0,0,0, 0,0,0,0, 0,0,0,0, 0,0,0,0}; // NOTE(casey): The default seed is now a "nothing-up-our-sleeves" number for good measure. You may verify that it is just an encoding of Pi. static meow_u8 MeowDefaultSeed[128] = { 0x32, 0x43, 0xF6, 0xA8, 0x88, 0x5A, 0x30, 0x8D, 0x31, 0x31, 0x98, 0xA2, 0xE0, 0x37, 0x07, 0x34, 0x4A, 0x40, 0x93, 0x82, 0x22, 0x99, 0xF3, 0x1D, 0x00, 0x82, 0xEF, 0xA9, 0x8E, 0xC4, 0xE6, 0xC8, 0x94, 0x52, 0x82, 0x1E, 0x63, 0x8D, 0x01, 0x37, 0x7B, 0xE5, 0x46, 0x6C, 0xF3, 0x4E, 0x90, 0xC6, 0xCC, 0x0A, 0xC2, 0x9B, 0x7C, 0x97, 0xC5, 0x0D, 0xD3, 0xF8, 0x4D, 0x5B, 0x5B, 0x54, 0x70, 0x91, 0x79, 0x21, 0x6D, 0x5D, 0x98, 0x97, 0x9F, 0xB1, 0xBD, 0x13, 0x10, 0xBA, 0x69, 0x8D, 0xFB, 0x5A, 0xC2, 0xFF, 0xD7, 0x2D, 0xBD, 0x01, 0xAD, 0xFB, 0x7B, 0x8E, 0x1A, 0xFE, 0xD6, 0xA2, 0x67, 0xE9, 0x6B, 0xA7, 0xC9, 0x04, 0x5F, 0x12, 0xC7, 0xF9, 0x92, 0x4A, 0x19, 0x94, 0x7B, 0x39, 0x16, 0xCF, 0x70, 0x80, 0x1F, 0x2E, 0x28, 0x58, 0xEF, 0xC1, 0x66, 0x36, 0x92, 0x0D, 0x87, 0x15, 0x74, 0xE6 }; // // NOTE(casey): Single block version // static meow_u128 MeowHash(void *Seed128Init, meow_umm Len, void *SourceInit) { meow_u128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; // NOTE(casey): xmm0-xmm7 are the hash accumulation lanes meow_u128 xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; // NOTE(casey): xmm8-xmm15 hold values to be appended (residual, length) meow_u8 *rax = (meow_u8 *)SourceInit; meow_u8 *rcx = (meow_u8 *)Seed128Init; // // NOTE(casey): Seed the eight hash registers // movdqu(xmm0, rcx + 0x00); movdqu(xmm1, rcx + 0x10); movdqu(xmm2, rcx + 0x20); movdqu(xmm3, rcx + 0x30); movdqu(xmm4, rcx + 0x40); movdqu(xmm5, rcx + 0x50); movdqu(xmm6, rcx + 0x60); movdqu(xmm7, rcx + 0x70); MEOW_DUMP_STATE("Seed", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); // // NOTE(casey): Hash all full 256-byte blocks // meow_umm BlockCount = (Len >> 8); if(BlockCount > MEOW_PREFETCH_LIMIT) { // NOTE(casey): For large input, modern Intel x64's can't hit full speed without prefetching, so we use this loop while(BlockCount--) { prefetcht0(rax + MEOW_PREFETCH + 0x00); prefetcht0(rax + MEOW_PREFETCH + 0x40); prefetcht0(rax + MEOW_PREFETCH + 0x80); prefetcht0(rax + MEOW_PREFETCH + 0xc0); MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00); MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20); MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40); MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60); MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80); MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0); MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0); MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0); rax += 0x100; } } else { // NOTE(casey): For small input, modern Intel x64's can't hit full speed _with_ prefetching (because of port pressure), so we use this loop. while(BlockCount--) { MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00); MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20); MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40); MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60); MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80); MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0); MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0); MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0); rax += 0x100; } } MEOW_DUMP_STATE("PostBlocks", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); // // NOTE(casey): Load any less-than-32-byte residual // pxor_clear(xmm9, xmm9); pxor_clear(xmm11, xmm11); // // TODO(casey): I need to put more thought into how the end-of-buffer stuff is actually working out here, // because I _think_ it may be possible to remove the first branch (on Len8) and let the mask zero out the // result, but it would take a little thought to make sure it couldn't read off the end of the buffer due // to the & 0xf on the align computation. // // NOTE(casey): First, we have to load the part that is _not_ 16-byte aligned meow_u8 *Last = (meow_u8 *)SourceInit + (Len & ~0xf); int unsigned Len8 = (Len & 0xf); if(Len8) { // NOTE(casey): Load the mask early movdqu(xmm8, &MeowMaskLen[0x10 - Len8]); meow_u8 *LastOk = (meow_u8*)((((meow_umm)(((meow_u8 *)SourceInit)+Len - 1)) | (MEOW_PAGESIZE - 1)) - 16); int Align = (Last > LastOk) ? ((int)(meow_umm)Last) & 0xf : 0; movdqu(xmm10, &MeowShiftAdjust[Align]); movdqu(xmm9, Last - Align); pshufb(xmm9, xmm10); // NOTE(jeffr): and off the extra bytes pand(xmm9, xmm8); } // NOTE(casey): Next, we have to load the part that _is_ 16-byte aligned if(Len & 0x10) { xmm11 = xmm9; movdqu(xmm9, Last - 0x10); } // // NOTE(casey): Construct the residual and length injests // xmm8 = xmm9; xmm10 = xmm9; palignr(xmm8, xmm11, 15); palignr(xmm10, xmm11, 1); // NOTE(casey): We have room for a 128-bit nonce and a 64-bit none here, but // the decision was made to leave them zero'd so as not to confuse people // about hwo to use them or what security implications they had. pxor_clear(xmm12, xmm12); pxor_clear(xmm13, xmm13); pxor_clear(xmm14, xmm14); movq(xmm15, Len); palignr(xmm12, xmm15, 15); palignr(xmm14, xmm15, 1); MEOW_DUMP_STATE("Residuals", xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, 0); // NOTE(casey): To maintain the mix-down pattern, we always Meow Mix the less-than-32-byte residual, even if it was empty MEOW_MIX_REG(xmm0, xmm4, xmm6, xmm1, xmm2, xmm8, xmm9, xmm10, xmm11); // NOTE(casey): Append the length, to avoid problems with our 32-byte padding MEOW_MIX_REG(xmm1, xmm5, xmm7, xmm2, xmm3, xmm12, xmm13, xmm14, xmm15); MEOW_DUMP_STATE("PostAppend", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); // // NOTE(casey): Hash all full 32-byte blocks // int unsigned LaneCount = (Len >> 5) & 0x7; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x00); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x20); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x40); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0x60); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0x80); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xa0); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0xc0); --LaneCount; // // NOTE(casey): Mix the eight lanes down to one 128-bit hash // MixDown: MEOW_DUMP_STATE("PostLanes", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6); MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7); MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0); MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1); MEOW_SHUFFLE(xmm4, xmm5, xmm6, xmm0, xmm1, xmm2); MEOW_SHUFFLE(xmm5, xmm6, xmm7, xmm1, xmm2, xmm3); MEOW_SHUFFLE(xmm6, xmm7, xmm0, xmm2, xmm3, xmm4); MEOW_SHUFFLE(xmm7, xmm0, xmm1, xmm3, xmm4, xmm5); MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6); MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7); MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0); MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1); MEOW_DUMP_STATE("PostMix", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); paddq(xmm0, xmm2); paddq(xmm1, xmm3); paddq(xmm4, xmm6); paddq(xmm5, xmm7); pxor(xmm0, xmm1); pxor(xmm4, xmm5); paddq(xmm0, xmm4); MEOW_DUMP_STATE("PostFold", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); return(xmm0); } // // NOTE(casey): Streaming construction // typedef struct meow_state { meow_u128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; meow_u64 TotalLengthInBytes; int unsigned BufferLen; meow_u8 Buffer[256]; meow_u128 Pad[2]; // NOTE(casey): So we know we can over-read Buffer as necessary } meow_state; static void MeowBegin(meow_state *State, void *Seed128) { meow_u8 *rcx = (meow_u8 *)Seed128; movdqu(State->xmm0, rcx + 0x00); movdqu(State->xmm1, rcx + 0x10); movdqu(State->xmm2, rcx + 0x20); movdqu(State->xmm3, rcx + 0x30); movdqu(State->xmm4, rcx + 0x40); movdqu(State->xmm5, rcx + 0x50); movdqu(State->xmm6, rcx + 0x60); movdqu(State->xmm7, rcx + 0x70); MEOW_DUMP_STATE("Seed", State->xmm0, State->xmm1, State->xmm2, State->xmm3, State->xmm4, State->xmm5, State->xmm6, State->xmm7, 0); State->BufferLen = 0; State->TotalLengthInBytes = 0; } static void MeowAbsorbBlocks(meow_state *State, meow_umm BlockCount, meow_u8 *rax) { meow_u128 xmm0 = State->xmm0; meow_u128 xmm1 = State->xmm1; meow_u128 xmm2 = State->xmm2; meow_u128 xmm3 = State->xmm3; meow_u128 xmm4 = State->xmm4; meow_u128 xmm5 = State->xmm5; meow_u128 xmm6 = State->xmm6; meow_u128 xmm7 = State->xmm7; if(BlockCount > MEOW_PREFETCH_LIMIT) { while(BlockCount--) { prefetcht0(rax + MEOW_PREFETCH + 0x00); prefetcht0(rax + MEOW_PREFETCH + 0x40); prefetcht0(rax + MEOW_PREFETCH + 0x80); prefetcht0(rax + MEOW_PREFETCH + 0xc0); MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00); MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20); MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40); MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60); MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80); MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0); MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0); MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0); rax += 0x100; } } else { while(BlockCount--) { MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0x00); MEOW_MIX(xmm1,xmm5,xmm7,xmm2,xmm3, rax + 0x20); MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x40); MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x60); MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x80); MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0xa0); MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0xc0); MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xe0); rax += 0x100; } } State->xmm0 = xmm0; State->xmm1 = xmm1; State->xmm2 = xmm2; State->xmm3 = xmm3; State->xmm4 = xmm4; State->xmm5 = xmm5; State->xmm6 = xmm6; State->xmm7 = xmm7; } static void MeowAbsorb(meow_state *State, meow_umm Len, void *SourceInit) { State->TotalLengthInBytes += Len; meow_u8 *Source = (meow_u8 *)SourceInit; // NOTE(casey): Handle any buffered residual if(State->BufferLen) { int unsigned Fill = (sizeof(State->Buffer) - State->BufferLen); if(Fill > Len) { Fill = (int unsigned)Len; } Len -= Fill; while(Fill--) { State->Buffer[State->BufferLen++] = *Source++; } if(State->BufferLen == sizeof(State->Buffer)) { MeowAbsorbBlocks(State, 1, State->Buffer); State->BufferLen = 0; } } // NOTE(casey): Handle any full blocks meow_u64 BlockCount = (Len >> 8); meow_u64 Advance = (BlockCount << 8); MeowAbsorbBlocks(State, BlockCount, Source); Len -= Advance; Source += Advance; // NOTE(casey): Store residual while(Len--) { State->Buffer[State->BufferLen++] = *Source++; } } static meow_u128 MeowEnd(meow_state *State, meow_u8 *Store128) { meow_umm Len = State->TotalLengthInBytes; meow_u128 xmm0 = State->xmm0; meow_u128 xmm1 = State->xmm1; meow_u128 xmm2 = State->xmm2; meow_u128 xmm3 = State->xmm3; meow_u128 xmm4 = State->xmm4; meow_u128 xmm5 = State->xmm5; meow_u128 xmm6 = State->xmm6; meow_u128 xmm7 = State->xmm7; meow_u128 xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; meow_u8 *rax = State->Buffer; pxor_clear(xmm9, xmm9); pxor_clear(xmm11, xmm11); meow_u8 *Last = (meow_u8 *)rax + (Len & 0xf0); int unsigned Len8 = (Len & 0xf); if(Len8) { movdqu(xmm8, &MeowMaskLen[0x10 - Len8]); movdqu(xmm9, Last); pand(xmm9, xmm8); } if(Len & 0x10) { xmm11 = xmm9; movdqu(xmm9, Last - 0x10); } xmm8 = xmm9; xmm10 = xmm9; palignr(xmm8, xmm11, 15); palignr(xmm10, xmm11, 1); pxor_clear(xmm12, xmm12); pxor_clear(xmm13, xmm13); pxor_clear(xmm14, xmm14); movq(xmm15, Len); palignr(xmm12, xmm15, 15); palignr(xmm14, xmm15, 1); MEOW_DUMP_STATE("PostBlocks", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); MEOW_DUMP_STATE("Residuals", xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15, 0); // NOTE(casey): To maintain the mix-down pattern, we always Meow Mix the less-than-32-byte residual, even if it was empty MEOW_MIX_REG(xmm0, xmm4, xmm6, xmm1, xmm2, xmm8, xmm9, xmm10, xmm11); // NOTE(casey): Append the length, to avoid problems with our 32-byte padding MEOW_MIX_REG(xmm1, xmm5, xmm7, xmm2, xmm3, xmm12, xmm13, xmm14, xmm15); MEOW_DUMP_STATE("PostAppend", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); // // NOTE(casey): Hash all full 32-byte blocks // int unsigned LaneCount = (Len >> 5) & 0x7; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm2,xmm6,xmm0,xmm3,xmm4, rax + 0x00); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm3,xmm7,xmm1,xmm4,xmm5, rax + 0x20); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm4,xmm0,xmm2,xmm5,xmm6, rax + 0x40); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm5,xmm1,xmm3,xmm6,xmm7, rax + 0x60); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm6,xmm2,xmm4,xmm7,xmm0, rax + 0x80); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm7,xmm3,xmm5,xmm0,xmm1, rax + 0xa0); --LaneCount; if(LaneCount == 0) goto MixDown; MEOW_MIX(xmm0,xmm4,xmm6,xmm1,xmm2, rax + 0xc0); --LaneCount; // // NOTE(casey): Mix the eight lanes down to one 128-bit hash // MixDown: MEOW_DUMP_STATE("PostLanes", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6); MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7); MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0); MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1); MEOW_SHUFFLE(xmm4, xmm5, xmm6, xmm0, xmm1, xmm2); MEOW_SHUFFLE(xmm5, xmm6, xmm7, xmm1, xmm2, xmm3); MEOW_SHUFFLE(xmm6, xmm7, xmm0, xmm2, xmm3, xmm4); MEOW_SHUFFLE(xmm7, xmm0, xmm1, xmm3, xmm4, xmm5); MEOW_SHUFFLE(xmm0, xmm1, xmm2, xmm4, xmm5, xmm6); MEOW_SHUFFLE(xmm1, xmm2, xmm3, xmm5, xmm6, xmm7); MEOW_SHUFFLE(xmm2, xmm3, xmm4, xmm6, xmm7, xmm0); MEOW_SHUFFLE(xmm3, xmm4, xmm5, xmm7, xmm0, xmm1); MEOW_DUMP_STATE("PostMix", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); if(Store128) { movdqu_mem(Store128 + 0x00, xmm0); movdqu_mem(Store128 + 0x10, xmm1); movdqu_mem(Store128 + 0x20, xmm2); movdqu_mem(Store128 + 0x30, xmm3); movdqu_mem(Store128 + 0x40, xmm4); movdqu_mem(Store128 + 0x50, xmm5); movdqu_mem(Store128 + 0x60, xmm6); movdqu_mem(Store128 + 0x70, xmm7); } paddq(xmm0, xmm2); paddq(xmm1, xmm3); paddq(xmm4, xmm6); paddq(xmm5, xmm7); pxor(xmm0, xmm1); pxor(xmm4, xmm5); paddq(xmm0, xmm4); MEOW_DUMP_STATE("PostFold", xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, 0); return(xmm0); } #undef INSTRUCTION_REORDER_BARRIER #undef prefetcht0 #undef movdqu #undef movdqu_mem #undef movq #undef aesdec #undef pshufb #undef pxor #undef paddq #undef pand #undef palignr #undef pxor_clear #undef MEOW_MIX #undef MEOW_MIX_REG #undef MEOW_SHUFFLE #undef MEOW_DUMP_STATE // // NOTE(casey): If you need to create your own seed from non-random data, you can use MeowExpandSeed // to create a seed which you then store for repeated use. It is _expensive_ to generate the seed, // so you do not want to do this every time you hash. You _only_ want to do it when you actually // need to create a new seed. // static void MeowExpandSeed(meow_umm InputLen, void *Input, meow_u8 *SeedResult) { meow_state State; meow_u64 LengthTab = (meow_u64)InputLen; // NOTE(casey): We need to always injest 8-byte lengths exactly, even on 32-bit builds, to ensure identical results meow_umm InjestCount = (256 / InputLen) + 2; MeowBegin(&State, MeowDefaultSeed); MeowAbsorb(&State, sizeof(LengthTab), &LengthTab); while(InjestCount--) { MeowAbsorb(&State, InputLen, Input); } MeowEnd(&State, SeedResult); } #define MEOW_HASH_X64_AESNI_H #endif