#include "path-search.hpp" #include "compat/format.hpp" #include "object.hpp" #include "point.hpp" #include "compat/math.hpp" #include #include #include #include #include namespace floormat { template using bbox = path_search::bbox; using visited = astar::visited; namespace { constexpr auto div_size = path_search::div_size; constexpr bbox bbox_from_pos1(point pt, Vector2ui size) { auto center = Vector2i(pt.local()) * iTILE_SIZE2 + Vector2i(pt.offset()); auto top_left = center - Vector2i(size / 2); auto bottom_right = top_left + Vector2i(size); return { top_left, bottom_right }; } constexpr bbox bbox_from_pos2(point pt, point from, Vector2ui size) { constexpr auto chunk_size = iTILE_SIZE2 * (int)TILE_MAX_DIM; auto nchunks = from.chunk() - pt.chunk(); auto chunk_pixels = nchunks * chunk_size; auto bb0_ = bbox_from_pos1(from, size); auto bb0 = bbox{ bb0_.min + chunk_pixels, bb0_.max + chunk_pixels }; auto bb = bbox_from_pos1(pt, size); auto min = Math::min(bb0.min, bb.min); auto max = Math::max(bb0.max, bb.max); return { min, max }; } static_assert(bbox_from_pos1({{}, {0, 0}, {15, 35}}, {10, 20}) == bbox{{10, 25}, {20, 45}}); static_assert(bbox_from_pos2({{{1, 1}, {1, 15}, 0}, {1, -1}}, {{{1, 2}, {1, 0}, 0}, {1, -1}}, {256, 256}) == bbox{{-63, 831}, {193, 1151}}); constexpr auto directions = []() constexpr { struct pair { Vector2i dir; uint32_t len; }; constexpr auto len1 = div_size; constexpr auto len2 = (uint32_t)(len1.length() + 0.5f); // NOLINT std::array array = {{ { { -1, -1 }, len2 }, { { 1, 1 }, len2 }, { { -1, 1 }, len2 }, { { 1, -1 }, len2 }, { { -1, 0 }, len1.x() }, { { 0, -1 }, len1.y() }, { { 1, 0 }, len1.x() }, { { 0, 1 }, len1.y() }, }}; for (auto& [vec, len] : array) { vec *= div_size; vec += Vector2i(1); } #if 0 for (auto i = 0uz; i < array.size(); i++) for (auto j = 0uz; j < i; j++) fm_assert(array[i].dir != array[j].dir); #endif return array; }(); struct heap_comparator { const std::vector& nodes; // NOLINT inline heap_comparator(const std::vector& nodes) : nodes{nodes} {} inline bool operator()(uint32_t a, uint32_t b) const { return nodes[b].dist < nodes[a].dist; } }; inline uint32_t distance(point a, point b) { Vector2i dist; dist += (a.coord() - b.coord())*iTILE_SIZE2; dist += Vector2i(a.offset()) - Vector2i(b.offset()); return (uint32_t)Math::ceil(Math::sqrt(dist.dot())); } inline uint32_t distance_l2(point a, point b) { Vector2i dist; dist += (a.coord() - b.coord())*iTILE_SIZE2; dist += Vector2i(a.offset()) - Vector2i(b.offset()); return (uint32_t)Math::abs(dist).sum(); } void set_result_from_idx(path_search_result& result, const std::vector& nodes, point to, const uint32_t idx) { fm_debug_assert(idx != (uint32_t)-1); auto& path = result.path(); path.clear(); const auto& to_node = nodes[idx]; if (to != to_node.pt) path.push_back(to); result.set_cost(to_node.dist); auto i = idx; do { const auto& node = nodes[i]; path.push_back(node.pt); i = node.prev; } while (i != (uint32_t)-1); std::reverse(path.begin(), path.end()); } } // namespace astar::astar() { reserve(initial_capacity); } void astar::reserve(size_t capacity) { nodes.reserve(capacity); Q.reserve(capacity); } void astar::clear() { nodes.clear(); Q.clear(); } void astar::add_to_heap(uint32_t id) { Q.push_back(id); std::push_heap(Q.begin(), Q.end(), heap_comparator{nodes}); } uint32_t astar::pop_from_heap() { std::pop_heap(Q.begin(), Q.end(), heap_comparator{nodes}); const auto id = Q.back(); Q.pop_back(); return id; } path_search_result astar::Dijkstra(world& w, const point from, const point to, object_id own_id, uint32_t max_dist, Vector2ub own_size_, int debug, const pred& p) { #ifdef FM_NO_DEBUG (void)debug; #endif Timeline timeline; timeline.start(); clear(); cache.allocate(from, max_dist); constexpr auto min_size = Vector2ui{div_size}; const auto own_size = Math::max(Vector2ui(own_size_), min_size); constexpr auto goal_thres = (uint32_t)(div_size.length() + 1.5f); if (from.coord().z() != to.coord().z()) [[unlikely]] return {}; // todo try removing this eventually if (from.coord().z() != 0) [[unlikely]] return {}; if (!path_search::is_passable(w, from.coord(), from.offset(), own_size, own_id, p)) return {}; if (!path_search::is_passable(w, to.coord(), to.offset(), own_size, own_id, p)) return {}; cache.allocate(from, max_dist); constexpr int8_t div_min = -div_factor*2, div_max = div_factor*2; for (int8_t y = div_min; y <= div_max; y++) for (int8_t x = div_min; x <= div_max; x++) { constexpr auto min_dist = (uint32_t)((TILE_SIZE2*2.f).length() + 1.f); auto off = Vector2i(x, y) * div_size; auto pt = object::normalize_coords({from.coord(), {}}, off); auto bb = bbox(bbox_from_pos2(from, pt, own_size)); auto dist = distance(from, pt) + min_dist; if (path_search::is_passable(w, from.chunk3(), bb, own_id, p)) { auto idx = (uint32_t)nodes.size(); cache.add_index(pt, idx); nodes.push_back({.dist = dist, .prev = (uint32_t)-1, .pt = pt, }); add_to_heap(idx); } } auto closest_dist = (uint32_t)-1; uint32_t closest_idx = (uint32_t)-1; auto goal_idx = (uint32_t)-1; while (!Q.empty()) { const auto cur_idx = pop_from_heap(); point cur_pt; uint32_t cur_dist; { auto& n = nodes[cur_idx]; cur_pt = n.pt; cur_dist = n.dist; } if (cur_dist >= max_dist) [[unlikely]] continue; if (auto d = distance(cur_pt, to); d < closest_dist) [[unlikely]] { closest_dist = d; closest_idx = cur_idx; #ifndef FM_NO_DEBUG if (debug >= 2) [[unlikely]] DBG_nospace << "closest node" << " px:" << closest_dist << " path:" << cur_dist << " pos:" << cur_pt; #endif } if (auto dist_to_goal = distance_l2(cur_pt, to); dist_to_goal < goal_thres) [[unlikely]] { auto dist = cur_dist + dist_to_goal; if (auto bb = bbox(bbox_from_pos2(to, cur_pt, own_size)); path_search::is_passable(w, to.chunk3(), bb, own_id, p)) { goal_idx = cur_idx; max_dist = dist; continue; // path can only get longer } } for (auto [vec, len] : directions) { const auto dist = cur_dist + len; if (dist >= max_dist) continue; const auto new_pt = object::normalize_coords(cur_pt, vec); auto chunk_idx = cache.get_chunk_index(Vector2i(new_pt.chunk())); auto tile_idx = cache.get_tile_index(Vector2i(new_pt.local()), new_pt.offset()); auto new_idx = cache.lookup_index(chunk_idx, tile_idx); if (new_idx != (uint32_t)-1) { if (nodes[new_idx].dist <= dist) continue; } if (auto bb = bbox(bbox_from_pos2(new_pt, cur_pt, own_size)); !path_search::is_passable(w, new_pt.chunk3(), bb, own_id, p)) continue; if (new_idx == (uint32_t)-1) { const auto sz = nodes.size(); new_idx = (uint32_t)sz; cache.add_index(chunk_idx, tile_idx, new_idx); auto new_node = visited { .dist = dist, .prev = cur_idx, .pt = new_pt, }; nodes.push_back(new_node); } else { auto& n = nodes[new_idx]; n.dist = dist; n.prev = cur_idx; } #ifndef FM_NO_DEBUG if (debug >= 3) [[unlikely]] DBG_nospace << " path:" << dist << " pos:" << Vector3i(new_pt.coord()) << ";" << new_pt.offset(); #endif add_to_heap(new_idx); } } //fm_debug_assert(nodes.size() == indexes.size()); path_search_result result; if (goal_idx != (uint32_t)-1) { result.set_found(true); result.set_distance(0); set_result_from_idx(result, nodes, to, goal_idx); } else if (closest_idx != (uint32_t)-1) { result.set_found(false); result.set_distance(closest_dist); set_result_from_idx(result, nodes, to, closest_idx); } result.set_time(timeline.currentFrameTime()); #ifndef FM_NO_DEBUG if (debug >= 1) [[unlikely]] { auto d0_ = Vector2i(Math::abs(from.coord() - to.coord())) * iTILE_SIZE2 + Vector2i(Math::abs(Vector2i(from.offset()) - Vector2i(to.offset()))); auto d0 = (uint32_t)d0_.length(); char buf[128]; size_t len = 0; const auto time = (uint32_t)Math::ceil(result.time() * 1e3f); if (goal_idx != (uint32_t)-1) { auto d = nodes[goal_idx].dist; len = snformat(buf, "Dijkstra: found in {} ms " "len:{} len0:{} ratio:{:.4}\n"_cf, time, d, d0, d > 0 && d0 > 0 ? (float)d/(float)d0 : 1); } else if (closest_idx != (uint32_t)-1) { const auto& closest = nodes[closest_idx]; fm_assert(closest.dist != 0 && closest.dist != (uint32_t)-1); len = snformat(buf, "Dijkstra: no path found in {} ms " "closest:{} len:{} len0:{} ratio:{:.4}\n"_cf, time, closest_dist, closest.dist, d0, d0 > 0 ? (float)closest.dist/(float)d0 : 1); } if (len) { std::fwrite(buf, len, 1, stdout); std::fflush(stdout); } } #endif return result; } struct astar::chunk_cache { static constexpr size_t dimensions[] = { TILE_COUNT, (size_t)div_factor * (size_t)div_factor, }; static constexpr size_t size = []() constexpr -> size_t { size_t x = 1; for (auto i : dimensions) x *= i; return x; }(); static constexpr size_t rank = sizeof(dimensions)/sizeof(dimensions[0]); struct index { uint32_t value = (uint32_t)value; }; std::array indexes = {}; std::bitset exists{false}; }; astar::cache::cache() = default; Vector2ui astar::cache::get_size_to_allocate(uint32_t max_dist) { constexpr auto chunk_size = Vector2ui(iTILE_SIZE2) * TILE_MAX_DIM; constexpr auto rounding = chunk_size - Vector2ui(1); auto nchunks = (Vector2ui(max_dist) + rounding) / chunk_size; return nchunks + Vector2ui(3); } void astar::cache::allocate(point from, uint32_t max_dist) { auto off = get_size_to_allocate(max_dist); start = Vector2i(from.chunk()) - Vector2i(off); size = off * 2u + Vector2ui(1); auto len = size.product(); if (len > array.size()) array = Array{ValueInit, len}; else for (auto i = 0uz; i < len; i++) array[i].exists = {}; } size_t astar::cache::get_chunk_index(Vector2i start, Vector2ui size, Vector2i coord) { auto off = Vector2ui(coord - start); fm_assert(off < size); auto index = off.y() * size.x() + off.x(); fm_debug_assert(index < size.product()); return index; } size_t astar::cache::get_chunk_index(Vector2i chunk) const { return get_chunk_index(start, size, chunk); } size_t astar::cache::get_tile_index(Vector2i pos, Vector2b offset_) { Vector2i offset{offset_}; constexpr auto tile_start = div_size * div_factor/-2; offset -= tile_start; fm_debug_assert(offset >= Vector2i{0, 0} && offset < div_size * div_factor); auto nth_div = Vector2ui(offset) / Vector2ui(div_size); const size_t idx[] = { (size_t)pos.y() * TILE_MAX_DIM + (size_t)pos.x(), (size_t)nth_div.y() * div_factor + (size_t)nth_div.x(), }; size_t index = 0; for (auto i = 0uz; i < chunk_cache::rank; i++) { size_t k = idx[i]; for (auto j = 0uz; j < i; j++) k *= chunk_cache::dimensions[j]; index += k; } fm_debug_assert(index < chunk_cache::size); return index; } void astar::cache::add_index(size_t chunk_index, size_t tile_index, uint32_t index) { fm_debug_assert(index != (uint32_t)-1); auto& c = array[chunk_index]; fm_debug_assert(!c.exists[tile_index]); c.exists[tile_index] = true; c.indexes[tile_index] = {index}; } void astar::cache::add_index(point pt, uint32_t index) { auto ch = get_chunk_index(Vector2i(pt.chunk())); auto tile = get_tile_index(Vector2i(pt.local()), pt.offset()); fm_debug_assert(!array[ch].exists[tile]); array[ch].exists[tile] = true; array[ch].indexes[tile] = {index}; } uint32_t astar::cache::lookup_index(size_t chunk_index, size_t tile_index) { auto& c = array[chunk_index]; if (c.exists[tile_index]) return c.indexes[tile_index].value; else return (uint32_t)-1; } } // namespace floormat