// Copyright (c) 2022 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. #ifndef BITCOIN_SUPPORT_ALLOCATORS_POOL_H #define BITCOIN_SUPPORT_ALLOCATORS_POOL_H #include #include #include #include #include #include #include #include /** * A memory resource similar to std::pmr::unsynchronized_pool_resource, but * optimized for node-based containers. It has the following properties: * * * Owns the allocated memory and frees it on destruction, even when deallocate * has not been called on the allocated blocks. * * * Consists of a number of pools, each one for a different block size. * Each pool holds blocks of uniform size in a freelist. * * * Exhausting memory in a freelist causes a new allocation of a fixed size chunk. * This chunk is used to carve out blocks. * * * Block sizes or alignments that can not be served by the pools are allocated * and deallocated by operator new(). * * PoolResource is not thread-safe. It is intended to be used by PoolAllocator. * * @tparam MAX_BLOCK_SIZE_BYTES Maximum size to allocate with the pool. If larger * sizes are requested, allocation falls back to new(). * * @tparam ALIGN_BYTES Required alignment for the allocations. * * An example: If you create a PoolResource<128, 8>(262144) and perform a bunch of * allocations and deallocate 2 blocks with size 8 bytes, and 3 blocks with size 16, * the members will look like this: * * m_free_lists m_allocated_chunks * ┌───┐ ┌───┐ ┌────────────-------──────┐ * │ │ blocks │ ├─►│ 262144 B │ * │ │ ┌─────┐ ┌─────┐ └─┬─┘ └────────────-------──────┘ * │ 1 ├─►│ 8 B ├─►│ 8 B │ │ * │ │ └─────┘ └─────┘ : * │ │ │ * │ │ ┌─────┐ ┌─────┐ ┌─────┐ ▼ * │ 2 ├─►│16 B ├─►│16 B ├─►│16 B │ ┌───┐ ┌─────────────────────────┐ * │ │ └─────┘ └─────┘ └─────┘ │ ├─►│ ▲ │ ▲ * │ │ └───┘ └──────────┬──────────────┘ │ * │ . │ │ m_available_memory_end * │ . │ m_available_memory_it * │ . │ * │ │ * │ │ * │16 │ * └───┘ * * Here m_free_lists[1] holds the 2 blocks of size 8 bytes, and m_free_lists[2] * holds the 3 blocks of size 16. The blocks came from the data stored in the * m_allocated_chunks list. Each chunk has bytes 262144. The last chunk has still * some memory available for the blocks, and when m_available_memory_it is at the * end, a new chunk will be allocated and added to the list. */ template class PoolResource final { static_assert(ALIGN_BYTES > 0, "ALIGN_BYTES must be nonzero"); static_assert((ALIGN_BYTES & (ALIGN_BYTES - 1)) == 0, "ALIGN_BYTES must be a power of two"); /** * In-place linked list of the allocations, used for the freelist. */ struct ListNode { ListNode* m_next; explicit ListNode(ListNode* next) : m_next(next) {} }; static_assert(std::is_trivially_destructible_v, "Make sure we don't need to manually call a destructor"); /** * Internal alignment value. The larger of the requested ALIGN_BYTES and alignof(FreeList). */ static constexpr std::size_t ELEM_ALIGN_BYTES = std::max(alignof(ListNode), ALIGN_BYTES); static_assert((ELEM_ALIGN_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "ELEM_ALIGN_BYTES must be a power of two"); static_assert(sizeof(ListNode) <= ELEM_ALIGN_BYTES, "Units of size ELEM_SIZE_ALIGN need to be able to store a ListNode"); static_assert((MAX_BLOCK_SIZE_BYTES & (ELEM_ALIGN_BYTES - 1)) == 0, "MAX_BLOCK_SIZE_BYTES needs to be a multiple of the alignment."); /** * Size in bytes to allocate per chunk */ const size_t m_chunk_size_bytes; /** * Contains all allocated pools of memory, used to free the data in the destructor. */ std::list m_allocated_chunks{}; /** * Single linked lists of all data that came from deallocating. * m_free_lists[n] will serve blocks of size n*ELEM_ALIGN_BYTES. */ std::array m_free_lists{}; /** * Points to the beginning of available memory for carving out allocations. */ std::byte* m_available_memory_it = nullptr; /** * Points to the end of available memory for carving out allocations. * * That member variable is redundant, and is always equal to `m_allocated_chunks.back() + m_chunk_size_bytes` * whenever it is accessed, but `m_available_memory_end` caches this for clarity and efficiency. */ std::byte* m_available_memory_end = nullptr; /** * How many multiple of ELEM_ALIGN_BYTES are necessary to fit bytes. We use that result directly as an index * into m_free_lists. Round up for the special case when bytes==0. */ [[nodiscard]] static constexpr std::size_t NumElemAlignBytes(std::size_t bytes) { return (bytes + ELEM_ALIGN_BYTES - 1) / ELEM_ALIGN_BYTES + (bytes == 0); } /** * True when it is possible to make use of the freelist */ [[nodiscard]] static constexpr bool IsFreeListUsable(std::size_t bytes, std::size_t alignment) { return alignment <= ELEM_ALIGN_BYTES && bytes <= MAX_BLOCK_SIZE_BYTES; } /** * Replaces node with placement constructed ListNode that points to the previous node */ void PlacementAddToList(void* p, ListNode*& node) { node = new (p) ListNode{node}; } /** * Allocate one full memory chunk which will be used to carve out allocations. * Also puts any leftover bytes into the freelist. * * Precondition: leftover bytes are either 0 or few enough to fit into a place in the freelist */ void AllocateChunk() { // if there is still any available memory left, put it into the freelist. size_t remaining_available_bytes = std::distance(m_available_memory_it, m_available_memory_end); if (0 != remaining_available_bytes) { PlacementAddToList(m_available_memory_it, m_free_lists[remaining_available_bytes / ELEM_ALIGN_BYTES]); } void* storage = ::operator new (m_chunk_size_bytes, std::align_val_t{ELEM_ALIGN_BYTES}); m_available_memory_it = new (storage) std::byte[m_chunk_size_bytes]; m_available_memory_end = m_available_memory_it + m_chunk_size_bytes; m_allocated_chunks.emplace_back(m_available_memory_it); } /** * Access to internals for testing purpose only */ friend class PoolResourceTester; public: /** * Construct a new PoolResource object which allocates the first chunk. * chunk_size_bytes will be rounded up to next multiple of ELEM_ALIGN_BYTES. */ explicit PoolResource(std::size_t chunk_size_bytes) : m_chunk_size_bytes(NumElemAlignBytes(chunk_size_bytes) * ELEM_ALIGN_BYTES) { assert(m_chunk_size_bytes >= MAX_BLOCK_SIZE_BYTES); AllocateChunk(); } /** * Construct a new Pool Resource object, defaults to 2^18=262144 chunk size. */ PoolResource() : PoolResource(262144) {} /** * Disable copy & move semantics, these are not supported for the resource. */ PoolResource(const PoolResource&) = delete; PoolResource& operator=(const PoolResource&) = delete; PoolResource(PoolResource&&) = delete; PoolResource& operator=(PoolResource&&) = delete; /** * Deallocates all memory allocated associated with the memory resource. */ ~PoolResource() { for (std::byte* chunk : m_allocated_chunks) { std::destroy(chunk, chunk + m_chunk_size_bytes); ::operator delete ((void*)chunk, std::align_val_t{ELEM_ALIGN_BYTES}); } } /** * Allocates a block of bytes. If possible the freelist is used, otherwise allocation * is forwarded to ::operator new(). */ void* Allocate(std::size_t bytes, std::size_t alignment) { if (IsFreeListUsable(bytes, alignment)) { const std::size_t num_alignments = NumElemAlignBytes(bytes); if (nullptr != m_free_lists[num_alignments]) { // we've already got data in the pool's freelist, unlink one element and return the pointer // to the unlinked memory. Since FreeList is trivially destructible we can just treat it as // uninitialized memory. return std::exchange(m_free_lists[num_alignments], m_free_lists[num_alignments]->m_next); } // freelist is empty: get one allocation from allocated chunk memory. const std::ptrdiff_t round_bytes = static_cast(num_alignments * ELEM_ALIGN_BYTES); if (round_bytes > m_available_memory_end - m_available_memory_it) { // slow path, only happens when a new chunk needs to be allocated AllocateChunk(); } // Make sure we use the right amount of bytes for that freelist (might be rounded up), return std::exchange(m_available_memory_it, m_available_memory_it + round_bytes); } // Can't use the pool => use operator new() return ::operator new (bytes, std::align_val_t{alignment}); } /** * Returns a block to the freelists, or deletes the block when it did not come from the chunks. */ void Deallocate(void* p, std::size_t bytes, std::size_t alignment) noexcept { if (IsFreeListUsable(bytes, alignment)) { const std::size_t num_alignments = NumElemAlignBytes(bytes); // put the memory block into the linked list. We can placement construct the FreeList // into the memory since we can be sure the alignment is correct. PlacementAddToList(p, m_free_lists[num_alignments]); } else { // Can't use the pool => forward deallocation to ::operator delete(). ::operator delete (p, std::align_val_t{alignment}); } } /** * Number of allocated chunks */ [[nodiscard]] std::size_t NumAllocatedChunks() const { return m_allocated_chunks.size(); } /** * Size in bytes to allocate per chunk, currently hardcoded to a fixed size. */ [[nodiscard]] size_t ChunkSizeBytes() const { return m_chunk_size_bytes; } }; /** * Forwards all allocations/deallocations to the PoolResource. */ template class PoolAllocator { PoolResource* m_resource; template friend class PoolAllocator; public: using value_type = T; using ResourceType = PoolResource; /** * Not explicit so we can easily construct it with the correct resource */ PoolAllocator(ResourceType* resource) noexcept : m_resource(resource) { } PoolAllocator(const PoolAllocator& other) noexcept = default; PoolAllocator& operator=(const PoolAllocator& other) noexcept = default; template PoolAllocator(const PoolAllocator& other) noexcept : m_resource(other.resource()) { } /** * The rebind struct here is mandatory because we use non type template arguments for * PoolAllocator. See https://en.cppreference.com/w/cpp/named_req/Allocator#cite_note-2 */ template struct rebind { using other = PoolAllocator; }; /** * Forwards each call to the resource. */ T* allocate(size_t n) { return static_cast(m_resource->Allocate(n * sizeof(T), alignof(T))); } /** * Forwards each call to the resource. */ void deallocate(T* p, size_t n) noexcept { m_resource->Deallocate(p, n * sizeof(T), alignof(T)); } ResourceType* resource() const noexcept { return m_resource; } }; template bool operator==(const PoolAllocator& a, const PoolAllocator& b) noexcept { return a.resource() == b.resource(); } template bool operator!=(const PoolAllocator& a, const PoolAllocator& b) noexcept { return !(a == b); } #endif // BITCOIN_SUPPORT_ALLOCATORS_POOL_H