1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
#include "main-impl.hpp"
#include "floormat/app.hpp"
#include "src/camera-offset.hpp"
#include <Magnum/GL/DefaultFramebuffer.h>
#include <thread>
namespace floormat {
void main_impl::recalc_viewport(Vector2i size) noexcept
{
update_window_state();
GL::defaultFramebuffer.setViewport({{}, size });
_msaa_framebuffer.detach(GL::Framebuffer::ColorAttachment{0});
_msaa_renderbuffer = Magnum::GL::Renderbuffer{};
_msaa_renderbuffer.setStorageMultisample(s.msaa_samples, GL::RenderbufferFormat::RGBA8, size);
_msaa_framebuffer.setViewport({{}, size });
_msaa_framebuffer.attachRenderbuffer(GL::Framebuffer::ColorAttachment{0}, _msaa_renderbuffer);
_shader.set_scale(Vector2{size});
app.on_viewport_event(size);
}
global_coords main_impl::pixel_to_tile(Vector2d position) const noexcept
{
constexpr Vector2d pixel_size(TILE_SIZE2);
constexpr Vector2d half{.5, .5};
const Vector2d px = position - Vector2d{windowSize()}*.5 - _shader.camera_offset()*.5;
const Vector2d vec = tile_shader::unproject(px) / pixel_size + half;
const auto x = (std::int32_t)std::floor(vec[0]), y = (std::int32_t)std::floor(vec[1]);
return { x, y };
}
auto main_impl::get_draw_bounds() const noexcept -> draw_bounds
{
using limits = std::numeric_limits<std::int16_t>;
auto x0 = limits::max(), x1 = limits::min(), y0 = limits::max(), y1 = limits::min();
for (const auto win = Vector2d(windowSize());
auto p : {pixel_to_tile(Vector2d{0, 0}).chunk(),
pixel_to_tile(Vector2d{win[0]-1, 0}).chunk(),
pixel_to_tile(Vector2d{0, win[1]-1}).chunk(),
pixel_to_tile(Vector2d{win[0]-1, win[1]-1}).chunk()})
{
x0 = std::min(x0, p.x);
x1 = std::max(x1, p.x);
y0 = std::min(y0, p.y);
y1 = std::max(y1, p.y);
}
return {x0, x1, y0, y1};
}
void main_impl::draw_world() noexcept
{
auto [minx, maxx, miny, maxy] = get_draw_bounds();
const auto sz = windowSize();
for (std::int16_t y = miny; y <= maxy; y++)
for (std::int16_t x = minx; x <= maxx; x++)
{
if (const chunk_coords c = {x, y}; !_world.contains(c))
app.maybe_initialize_chunk(c, _world[c]);
const chunk_coords c{x, y};
const with_shifted_camera_offset o{_shader, c};
if (check_chunk_visible(_shader.camera_offset(), sz))
_floor_mesh.draw(_shader, _world[c]);
}
for (std::int16_t y = miny; y <= maxy; y++)
for (std::int16_t x = minx; x <= maxx; x++)
{
const chunk_coords c{x, y};
const with_shifted_camera_offset o{_shader, c};
if (check_chunk_visible(_shader.camera_offset(), sz))
_wall_mesh.draw(_shader, _world[c]);
}
}
bool main_impl::check_chunk_visible(const Vector2d& offset, const Vector2i& size) noexcept
{
constexpr Vector3d len = dTILE_SIZE * TILE_MAX_DIM20d;
enum : std::size_t { x, y, };
constexpr Vector2d p00 = tile_shader::project(Vector3d(0, 0, 0)),
p10 = tile_shader::project(Vector3d(len[x], 0, 0)),
p01 = tile_shader::project(Vector3d(0, len[y], 0)),
p11 = tile_shader::project(Vector3d(len[x], len[y], 0));
constexpr double xs[] = { p00[x], p10[x], p01[x], p11[x], }, ys[] = { p00[y], p10[y], p01[y], p11[y], };
constexpr double minx = *std::min_element(std::cbegin(xs), std::cend(xs)),
maxx = *std::max_element(std::cbegin(xs), std::cend(xs)),
miny = *std::min_element(std::cbegin(ys), std::cend(ys)),
maxy = *std::max_element(std::cbegin(ys), std::cend(ys));
constexpr int W = (int)(maxx - minx + .5 + 1e-16), H = (int)(maxy - miny + .5 + 1e-16);
const auto X = (int)(minx + (offset[x] + size[x])*.5), Y = (int)(miny + (offset[y] + size[y])*.5);
return X + W > 0 && X < size[x] && Y + H > 0 && Y < size[y];
}
void main_impl::drawEvent()
{
float dt = timeline.previousFrameDuration();
if (dt > 0)
{
const float RC1 = dt_expected.do_sleep ? 1.f : 1.f/15,
RC2 = dt_expected.do_sleep ? 1.f/10 : 1.f/30;
const float alpha1 = dt/(dt + RC1);
const float alpha2 = dt/(dt + RC2);
_frame_time1 = _frame_time1*(1-alpha1) + alpha1*dt;
_frame_time2 = _frame_time1*(1-alpha2) + alpha2*dt;
constexpr float max_deviation = 10 * 1e-3f;
if (std::fabs(_frame_time1 - _frame_time2) > max_deviation)
_frame_time1 = _frame_time2;
}
else
{
swapBuffers();
timeline.nextFrame();
}
dt = std::clamp(dt, 1e-5f, std::fmaxf(1e-1f, dt_expected.value));
app.update(dt);
_shader.set_tint({1, 1, 1, 1});
{
GL::defaultFramebuffer.clear(GL::FramebufferClear::Color);
#ifndef FM_SKIP_MSAA
_msaa_framebuffer.clear(GL::FramebufferClear::Color);
_msaa_framebuffer.bind();
#endif
draw_world();
app.draw_msaa();
#ifndef FM_SKIP_MSAA
GL::defaultFramebuffer.bind();
GL::Framebuffer::blit(_msaa_framebuffer, GL::defaultFramebuffer, {{}, windowSize()}, GL::FramebufferBlit::Color);
#endif
}
app.draw();
swapBuffers();
redraw();
if (dt_expected.do_sleep)
{
constexpr float ε = 1e-3f;
const float Δt൦ = timeline.currentFrameDuration(), sleep_secs = dt_expected.value - Δt൦ - dt_expected.jitter;
if (sleep_secs > ε)
std::this_thread::sleep_for(std::chrono::nanoseconds((long long)(sleep_secs * 1e9f)));
//fm_debug("jitter:%.1f sleep:%.0f", dt_expected.jitter*1000, sleep_secs*1000);
const float Δt = timeline.currentFrameDuration() - dt_expected.value;
constexpr float α = .1f;
dt_expected.jitter = std::fmax(dt_expected.jitter + Δt * α,
dt_expected.jitter * (1-α) + Δt * α);
dt_expected.jitter = std::copysignf(std::fminf(dt_expected.value, std::fabsf(dt_expected.jitter)), dt_expected.jitter);
}
else
dt_expected.jitter = 0;
timeline.nextFrame();
}
} // namespace floormat
|