1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
|
#ifndef RTREE_H
#define RTREE_H
// NOTE This file compiles under MSVC 6 SP5 and MSVC .Net 2003 it may not work on other compilers without modification.
// NOTE These next few lines may be win32 specific, you may need to modify them to compile on other platform
//#define RTREE_STDIO
#ifdef RTREE_STDIO
#include <stdio.h>
#endif
#include <vector>
//
// RTree.h
//
#define RTREE_DONT_USE_MEMPOOLS // This version does not contain a fixed memory allocator, fill in lines with EXAMPLE to implement one.
#define RTREE_USE_SPHERICAL_VOLUME // Better split classification, may be slower on some systems
#ifdef RTREE_STDIO
// Fwd decl
class RTFileStream; // File I/O helper class, look below for implementation and notes.
#endif
/// \class RTree
/// Implementation of RTree, a multidimensional bounding rectangle tree.
/// Example usage: For a 3-dimensional tree use RTree<Object*, float, 3> myTree;
///
/// This modified, templated C++ version by Greg Douglas at Auran (http://www.auran.com)
///
/// DATATYPE Referenced data, should be int, void*, obj* etc. no larger than sizeof<void*> and simple type
/// ELEMTYPE Type of element such as int or float
/// NUMDIMS Number of dimensions such as 2 or 3
/// ELEMTYPEREAL Type of element that allows fractional and large values such as float or double, for use in volume calcs
///
/// NOTES: Inserting and removing data requires the knowledge of its constant Minimal Bounding Rectangle.
/// This version uses new/delete for nodes, I recommend using a fixed size allocator for efficiency.
/// Instead of using a callback function for returned results, I recommend and efficient pre-sized, grow-only memory
/// array similar to MFC CArray or STL Vector for returning search query result.
///
template<class DATATYPE, class ELEMTYPE, int NUMDIMS,
class ELEMTYPEREAL = ELEMTYPE, int TMAXNODES = 8, int TMINNODES = TMAXNODES / 2>
class RTree
{
protected:
struct Node; // Fwd decl. Used by other internal structs and iterator
public:
// These constant must be declared after Branch and before Node struct
// Stuck up here for MSVC 6 compiler. NSVC .NET 2003 is much happier.
enum
{
MAXNODES = TMAXNODES, ///< Max elements in node
MINNODES = TMINNODES, ///< Min elements in node
};
public:
RTree();
RTree(const RTree& other);
virtual ~RTree() noexcept;
RTree& operator=(const RTree&);
/// Insert entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Insert(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
/// Remove entry
/// \param a_min Min of bounding rect
/// \param a_max Max of bounding rect
/// \param a_dataId Positive Id of data. Maybe zero, but negative numbers not allowed.
void Remove(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], const DATATYPE& a_dataId);
/// Find all within search rectangle
/// \param a_min Min of search bounding rect
/// \param a_max Max of search bounding rect
/// \param a_searchResult Search result array. Caller should set grow size. Function will reset, not append to array.
/// \param a_resultCallback Callback function to return result. Callback should return 'true' to continue searching
/// \param a_context User context to pass as parameter to a_resultCallback
/// \return Returns the number of entries found
template<typename F> int Search(const ELEMTYPE a_min[NUMDIMS], const ELEMTYPE a_max[NUMDIMS], F&& callback) const;
/// Remove all entries from tree
void RemoveAll();
/// Count the data elements in this container. This is slow as no internal counter is maintained.
int Count() const;
#ifdef RTREE_STDIO
/// Load tree contents from file
bool Load(const char* a_fileName);
/// Load tree contents from stream
bool Load(RTFileStream& a_stream);
/// Save tree contents to file
bool Save(const char* a_fileName);
/// Save tree contents to stream
bool Save(RTFileStream& a_stream);
#endif
/// Iterator is not remove safe.
class Iterator
{
private:
enum { MAX_STACK = 32 }; // Max stack size. Allows almost n^32 where n is number of branches in node
struct StackElement
{
Node* m_node;
int m_branchIndex;
};
public:
Iterator() { Init(); }
~Iterator() { }
/// Is iterator invalid
bool IsNull() { return (m_tos <= 0); }
/// Is iterator pointing to valid data
bool IsNotNull() const { return (m_tos > 0); }
/// Access the current data element. Caller must be sure iterator is not NULL first.
DATATYPE& operator*();
/// Access the current data element. Caller must be sure iterator is not NULL first.
const DATATYPE& operator*() const;
/// Find the next data element
bool operator++() { return FindNextData(); }
/// Get the bounds for this node
void GetBounds(ELEMTYPE a_min[NUMDIMS], ELEMTYPE a_max[NUMDIMS]);
private:
/// Reset iterator
void Init() { m_tos = 0; }
/// Find the next data element in the tree (For internal use only)
bool FindNextData();
/// Push node and branch onto iteration stack (For internal use only)
void Push(Node* a_node, int a_branchIndex);
/// Pop element off iteration stack (For internal use only)
StackElement& Pop();
StackElement m_stack[MAX_STACK]; ///< Stack as we are doing iteration instead of recursion
int m_tos; ///< Top Of Stack index
friend class RTree; // Allow hiding of non-public functions while allowing manipulation by logical owner
};
/// Get 'first' for iteration
void GetFirst(Iterator& a_it);
/// Get Next for iteration
void GetNext(Iterator& a_it) { ++a_it; }
/// Is iterator NULL, or at end?
bool IsNull(Iterator& a_it) { return a_it.IsNull(); }
/// Get object at iterator position
DATATYPE& GetAt(Iterator& a_it) { return *a_it; }
/// Minimal bounding rectangle (n-dimensional)
struct Rect
{
ELEMTYPE m_min[NUMDIMS]; ///< Min dimensions of bounding box
ELEMTYPE m_max[NUMDIMS]; ///< Max dimensions of bounding box
};
protected:
/// May be data or may be another subtree
/// The parents level determines this.
/// If the parents level is 0, then this is data
struct Branch
{
Rect m_rect; ///< Bounds
Node* m_child; ///< Child node
DATATYPE m_data; ///< Data Id
};
/// Node for each branch level
struct Node
{
bool IsInternalNode() { return (m_level > 0); } // Not a leaf, but a internal node
bool IsLeaf() { return (m_level == 0); } // A leaf, contains data
int m_count; ///< Count
int m_level; ///< Leaf is zero, others positive
Branch m_branch[MAXNODES]; ///< Branch
};
/// A link list of nodes for reinsertion after a delete operation
struct ListNode
{
ListNode* m_next; ///< Next in list
Node* m_node; ///< Node
};
/// Variables for finding a split partition
struct PartitionVars
{
enum { NOT_TAKEN = -1 }; // indicates that position
int m_partition[MAXNODES+1];
int m_total;
int m_minFill;
int m_count[2];
Rect m_cover[2];
ELEMTYPEREAL m_area[2];
Branch m_branchBuf[MAXNODES+1];
int m_branchCount;
Rect m_coverSplit;
ELEMTYPEREAL m_coverSplitArea;
};
Node* AllocNode();
void FreeNode(Node* a_node);
void InitNode(Node* a_node);
void InitRect(Rect* a_rect);
bool InsertRectRec(const Branch& a_branch, Node* a_node, Node** a_newNode, int a_level);
bool InsertRect(const Branch& a_branch, Node** a_root, int a_level);
Rect NodeCover(Node* a_node);
bool AddBranch(const Branch* a_branch, Node* a_node, Node** a_newNode);
void DisconnectBranch(Node* a_node, int a_index);
int PickBranch(const Rect* a_rect, Node* a_node);
Rect CombineRect(const Rect* a_rectA, const Rect* a_rectB);
void SplitNode(Node* a_node, const Branch* a_branch, Node** a_newNode);
ELEMTYPEREAL RectSphericalVolume(Rect* a_rect);
ELEMTYPEREAL RectVolume(Rect* a_rect);
ELEMTYPEREAL CalcRectVolume(Rect* a_rect);
void GetBranches(Node* a_node, const Branch* a_branch, PartitionVars* a_parVars);
void ChoosePartition(PartitionVars* a_parVars, int a_minFill);
void LoadNodes(Node* a_nodeA, Node* a_nodeB, PartitionVars* a_parVars);
void InitParVars(PartitionVars* a_parVars, int a_maxRects, int a_minFill);
void PickSeeds(PartitionVars* a_parVars);
void Classify(int a_index, int a_group, PartitionVars* a_parVars);
bool RemoveRect(Rect* a_rect, const DATATYPE& a_id, Node** a_root);
bool RemoveRectRec(Rect* a_rect, const DATATYPE& a_id, Node* a_node, ListNode** a_listNode);
ListNode* AllocListNode();
void FreeListNode(ListNode* a_listNode);
bool Overlap(Rect* a_rectA, Rect* a_rectB) const;
void ReInsert(Node* a_node, ListNode** a_listNode);
template<typename F> bool Search(Node* a_node, Rect* a_rect, int& a_foundCount, F&& callback) const;
void RemoveAllRec(Node* a_node);
void Reset();
void CountRec(Node* a_node, int& a_count) const;
#ifdef RTREE_STDIO
bool SaveRec(Node* a_node, RTFileStream& a_stream);
bool LoadRec(Node* a_node, RTFileStream& a_stream);
#endif
void CopyRec(Node* current, Node* other);
Node* m_root; ///< Root of tree
ELEMTYPEREAL m_unitSphereVolume; ///< Unit sphere constant for required number of dimensions
public:
// return all the AABBs that form the RTree
void ListTree(std::vector<Rect>& vec, std::vector<Node*>& temp) const;
};
#include <cinttypes>
extern template class RTree<std::uint64_t, float, 2, float>;
//#undef RTREE_TEMPLATE
//#undef RTREE_QUAL
#endif //RTREE_H
|