1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
|
#include "path-search.hpp"
#include "global-coords.hpp"
#include "world.hpp"
#include "pass-mode.hpp"
#include "RTree-search.hpp"
#include "compat/function2.hpp"
#include <Corrade/Containers/PairStl.h>
#include <Magnum/Math/Functions.h>
#include <Magnum/Math/Range.h>
namespace floormat {
namespace {
constexpr auto div = path_search::subdivide_factor;
constexpr int div_BITS = 2;
static_assert(1 << div_BITS == div);
constexpr auto never_continue_1 = [](collision_data) constexpr { return path_search_continue::blocked; };
constexpr auto never_continue_ = path_search::pred{never_continue_1};
constexpr auto always_continue_1 = [](collision_data) constexpr { return path_search_continue::pass; };
constexpr auto always_continue_ = path_search::pred{always_continue_1};
constexpr Pair<Vector2i, Vector2i> get_value(Vector2ub sz, Vector2ub div, rotation r)
{
const int offset_W = iTILE_SIZE2.x()/(int)div.x(), offset_N = iTILE_SIZE2.y()/(int)div.y();
const auto r_ = (uint8_t)r;
CORRADE_ASSUME(r_ <= (uint8_t)rotation_COUNT);
switch (r_)
{
case (uint8_t)rotation::N: {
auto min_N = Vector2i(-sz.x()/2, -offset_N - sz.y()/2 );
auto max_N = Vector2i(min_N.x() + sz.x(), sz.y() - sz.y()/2 );
return {min_N, max_N};
}
case (uint8_t)rotation::S: {
auto min_S = Vector2i(-sz.x()/2, -sz.y() );
auto max_S = Vector2i(min_S.x() + sz.x(), offset_N + sz.y() - sz.y()/2 );
return {min_S, max_S};
}
case (uint8_t)rotation::W: {
auto min_W = Vector2i(-offset_W - sz.x()/2, -sz.y()/2 );
auto max_W = Vector2i(sz.x() - sz.x()/2, min_W.y() + sz.y() );
return {min_W, max_W};
}
case (uint8_t)rotation::E: {
auto min_E = Vector2i(-sz.x()/2, -sz.y()/2 );
auto max_E = Vector2i(offset_W + sz.x() - sz.x()/2, min_E.y() + sz.y() );
return {min_E, max_E};
}
case (uint8_t)rotation_COUNT: {
auto min_C = Vector2i(-sz.x()/2, -sz.y()/2 );
auto max_C = min_C + Vector2i(sz);
return {min_C, max_C};
}
default:
fm_abort("wrong 4-way rotation enum '%d'", (int)r);
}
}
[[maybe_unused]] constexpr bool test_offsets()
{
constexpr auto sz_ = Vector2ub(path_search::min_size);
constexpr Vector2i shift = Vector2i(0, 0) * iTILE_SIZE2 + Vector2i(0, 0);
[[maybe_unused]] constexpr auto N = get_value(sz_, {1,1}, rotation::N);
[[maybe_unused]] constexpr auto min_N = N.first() + shift, max_N = N.second() + shift;
[[maybe_unused]] constexpr auto N_min_x = min_N.x(), N_min_y = min_N.y();
[[maybe_unused]] constexpr auto N_max_x = max_N.x(), N_max_y = max_N.y();
[[maybe_unused]] constexpr auto E = get_value(sz_, {1,1}, rotation::E);
[[maybe_unused]] constexpr auto min_E = E.first() + shift, max_E = E.second() + shift;
[[maybe_unused]] constexpr auto E_min_x = min_E.x(), E_min_y = min_E.y();
[[maybe_unused]] constexpr auto E_max_x = max_E.x(), E_max_y = max_E.y();
[[maybe_unused]] constexpr auto S = get_value(sz_, {1,1}, rotation::S);
[[maybe_unused]] constexpr auto min_S = S.first() + shift, max_S = S.second() + shift;
[[maybe_unused]] constexpr auto S_min_x = min_S.x(), S_min_y = min_S.y();
[[maybe_unused]] constexpr auto S_max_x = max_S.x(), S_max_y = max_S.y();
[[maybe_unused]] constexpr auto W = get_value(sz_, {1,1}, rotation::W);
[[maybe_unused]] constexpr auto min_W = W.first() + shift, max_W = W.second() + shift;
[[maybe_unused]] constexpr auto W_min_x = min_W.x(), W_min_y = min_W.y();
[[maybe_unused]] constexpr auto W_max_x = max_W.x(), W_max_y = max_W.y();
return true;
}
static_assert(test_offsets());
[[maybe_unused]] constexpr bool test_offsets2()
{
using enum rotation;
constexpr auto tile_start = iTILE_SIZE2/-2;
constexpr auto sz = Vector2ub(8, 16);
{
constexpr auto bb = get_value(sz, Vector2ub(div), N);
constexpr auto min = tile_start + bb.first(), max = tile_start + bb.second();
static_assert(min.x() == -32 - sz.x()/2);
static_assert(max.x() == -32 + sz.x()/2);
static_assert(min.y() == -48 - sz.y()/2);
static_assert(max.y() == -32 + sz.y()/2);
}
{
constexpr auto bb = get_value(sz, Vector2ub(div), W);
constexpr auto min = tile_start + bb.first(), max = tile_start + bb.second();
static_assert(min.x() == -32 - 16 - sz.x()/2);
static_assert(max.x() == -32 + sz.x()/2);
static_assert(min.y() == -32 - sz.y()/2);
static_assert(max.y() == -32 + sz.y()/2);
}
return true;
}
static_assert(test_offsets2());
constexpr auto tile_bbox(local_coords tile, Vector2b offset, Vector2ub size)
{
constexpr auto tile_start = TILE_SIZE2*.5f;
auto size_ = Vector2(size), half_size = Vector2(size/2);
auto pos = tile_start + Vector2(tile) * TILE_SIZE2 + Vector2(offset);
auto bb = path_search::bbox<float>{pos - half_size, pos + size_};
return bb;
};
} // namespace
path_search::neighbors::operator ArrayView<const global_coords>() const { return {data.data(), size}; }
auto path_search::never_continue() noexcept -> const pred& { return never_continue_; }
auto path_search::always_continue() noexcept -> const pred& { return always_continue_; }
astar_edge::astar_edge(chunk_coords_ ch1, local_coords t1, Vector2b off1,
chunk_coords_ ch2, local_coords t2, Vector2b off2) :
from_cx{ch1.x}, from_cy{ch1.y},
to_cx{ch2.x}, to_cy{ch2.y},
from_cz{ch1.z}, to_cz{ch2.z},
from_t{t1.to_index()}, to_t{t2.to_index()},
from_offx{off1.x()}, from_offy{off1.y()},
to_offx{off2.x()}, to_offy{off2.y()}
{
}
bool path_search::is_passable_1(chunk& c, Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
auto& rt = *c.rtree();
bool is_passable = true;
rt.Search(min.data(), max.data(), [&](uint64_t data, const auto&) {
[[maybe_unused]] auto x = std::bit_cast<collision_data>(data);
if (x.data != own_id)
{
if (x.pass != (uint64_t)pass_mode::pass && p(x) != path_search_continue::pass)
{
is_passable = false;
//[[maybe_unused]] auto obj = c.world().find_object(x.data);
return false;
}
}
return true;
});
return is_passable;
}
bool path_search::is_passable(world& w, chunk_coords_ ch0, Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
auto* c = w.at(ch0);
auto neighbors = w.neighbors(ch0);
return is_passable_(c, neighbors, min, max, own_id, p);
}
bool path_search::is_passable_(chunk* c0, const std::array<world::neighbor_pair, 8>& neighbors,
Vector2 min, Vector2 max, object_id own_id, const pred& p)
{
fm_debug_assert(max >= min);
if (c0)
// it's not correct to return true if c == nullptr
// because neighbors can still contain bounding boxes for that tile
if (!is_passable_1(*c0, min, max, own_id, p))
return false;
for (auto i = 0uz; i < 8; i++)
{
auto nb = world::neighbor_offsets[i];
auto* c2 = neighbors[i].c;
if (c2)
{
static_assert(std::size(world::neighbor_offsets) == 8);
constexpr auto chunk_size = iTILE_SIZE2 * TILE_MAX_DIM;
constexpr auto bbox_size = Vector2i(1 << sizeof(Vector2b::Type)*8);
constexpr auto chunk_max = chunk_size + bbox_size;
const auto off = Vector2(nb)*Vector2(chunk_size);
const auto min_ = min - off, max_ = max - off;
if (min_.x() > chunk_max.x() || min_.y() > chunk_max.y())
continue;
if (max_.x() < -bbox_size.x() || max_.y() < -bbox_size.y())
continue;
if (!is_passable_1(*c2, min_, max_, own_id, p))
return false;
}
}
return true;
}
bool path_search::is_passable(world& w, global_coords coord, Vector2b offset, Vector2ub size_,
object_id own_id, const pred& p)
{
auto center = iTILE_SIZE2 * Vector2i(coord.local()) + Vector2i(offset);
auto size = Vector2(size_);
auto min = Vector2(center) - size*.5f, max = min + size;
return is_passable(w, coord, min, max, own_id, p);
}
auto path_search::neighbor_tile_bbox(Vector2i coord, Vector2ub own_size, Vector2ub div, rotation r) -> bbox<float>
{
own_size = Math::max(own_size, Vector2ub(min_size));
const auto shift = coord * iTILE_SIZE2;
auto [min, max] = get_value(own_size, div, r);
return { Vector2(min + shift), Vector2(max + shift) };
}
auto path_search::neighbor_tiles(world& w, global_coords coord, Vector2ub size, object_id own_id, const pred& p) -> neighbors
{
auto ch = chunk_coords_{ coord.chunk(), coord.z() };
auto pos = Vector2i(coord.local());
constexpr auto min_size = Vector2ub(iTILE_SIZE2/4);
size = Math::max(size, min_size);
neighbors ns;
using enum rotation;
constexpr struct {
Vector2i off;
rotation r = {};
} nbs[] = {
{ { 0, -1 }, N },
{ { 1, 0 }, E },
{ { 0, 1 }, S },
{ { -1, 0 }, W },
};
for (auto [off, dir] : nbs)
{
auto [min, max] = neighbor_tile_bbox(pos, size, { 1, 1 }, dir);
if (is_passable(w, ch, min, max, own_id, p))
ns.data[ns.size++] = { coord + off, {} };
}
return ns;
}
template<typename T = float>
requires std::is_arithmetic_v<T>
auto path_search::bbox_union(bbox<T> bb, Vector2i coord, Vector2b offset, Vector2ub size) -> bbox<T>
{
auto center = coord * iTILE_SIZE2 + Vector2i(offset);
auto min = center - Vector2i(size / 2);
auto max = center + Vector2i(size);
using Vec = VectorTypeFor<2, T>;
return {
.min = Math::min(Vec(bb.min), Vec(min)),
.max = Math::max(Vec(bb.max), Vec(max)),
};
}
template auto path_search::bbox_union(bbox<int> bb, Math::Vector2<int> coord, Vector2b offset, Vector2ub size) -> bbox<int>;
template auto path_search::bbox_union(bbox<float> bb, Vector2i coord, Vector2b offset, Vector2ub size) -> bbox<float>;
auto path_search::bbox_union(bbox<int> bb1, bbox<int> bb2) -> bbox<int>
{
return { Math::min(bb1.min, bb2.min), Math::max(bb1.max, bb2.max) };
}
} // namespace floormat
|