1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
|
#include "world.hpp"
#include "chunk.hpp"
#include "object.hpp"
#include "critter.hpp"
#include "scenery.hpp"
#include "light.hpp"
#include "compat/shared-ptr-wrapper.hpp"
#include "compat/int-hash.hpp"
#include "compat/exception.hpp"
#include <cr/GrowableArray.h>
#include <tsl/robin_map.h>
using namespace floormat;
size_t world::object_id_hasher::operator()(object_id id) const noexcept { return hash_int(id); }
size_t world::chunk_coords_hasher::operator()(const chunk_coords_& coord) const noexcept
{
uint64_t x = 0;
x |= uint64_t((uint16_t)coord.x) << 0;
x |= uint64_t((uint16_t)coord.y) << 16;
x |= uint64_t( (uint8_t)coord.z) << 32;
return hash_int(x);
}
namespace floormat {
struct world::robin_map_wrapper final : tsl::robin_map<object_id, std::weak_ptr<object>, object_id_hasher>
{
using tsl::robin_map<object_id, std::weak_ptr<object>, object_id_hasher>::robin_map;
};
world::world(world&& w) noexcept = default;
world::world(std::unordered_map<chunk_coords_, chunk>&& chunks) :
world{std::max(initial_capacity, size_t(1/max_load_factor * 2 * chunks.size()))}
{
for (auto&& [coord, c] : chunks)
operator[](coord) = move(c);
}
world& world::operator=(world&& w) noexcept
{
fm_debug_assert(&w != this);
fm_assert(!w._teardown);
fm_assert(!_teardown);
fm_assert(w._unique_id);
_last_chunk = {};
_chunks = move(w._chunks);
_objects = move(w._objects);
w._objects = {};
_unique_id = move(w._unique_id);
fm_debug_assert(_unique_id);
fm_debug_assert(w._unique_id == nullptr);
_object_counter = w._object_counter;
w._object_counter = 0;
_current_frame = w._current_frame;
for (auto& [id, c] : _chunks)
c._world = this;
return *this;
}
world::world() : world{initial_capacity}
{
}
world::~world() noexcept
{
for (auto& [k, c] : _chunks)
c.on_teardown();
_teardown = true;
for (auto& [k, c] : _chunks)
{
c._teardown = true;
c.mark_scenery_modified();
c.mark_passability_modified();
_last_chunk = {};
arrayResize(c._objects, 0);
}
_last_chunk = {};
_chunks.clear();
_objects->clear();
}
world::world(size_t capacity) : _chunks{capacity}
{
_chunks.max_load_factor(max_load_factor);
_chunks.reserve(initial_capacity);
_objects->max_load_factor(max_load_factor);
_objects->reserve(initial_capacity);
}
chunk& world::operator[](chunk_coords_ coord) noexcept
{
fm_debug_assert(coord.z >= chunk_z_min && coord.z <= chunk_z_max);
auto& [c, coord2] = _last_chunk;
if (coord != coord2)
c = &_chunks.try_emplace(coord, *this, coord).first->second;
coord2 = coord;
return *c;
}
auto world::operator[](global_coords pt) noexcept -> pair_chunk_tile
{
auto& c = operator[](pt.chunk3());
return { c, c[pt.local()] };
}
chunk* world::at(chunk_coords_ c) noexcept
{
auto it = _chunks.find(c);
if (it != _chunks.end())
return &it->second;
else
return nullptr;
}
bool world::contains(chunk_coords_ c) const noexcept
{
return _chunks.find(c) != _chunks.cend();
}
void world::clear()
{
fm_assert(!_teardown);
_chunks.clear();
_chunks.rehash(initial_capacity);
_objects->clear();
_objects->rehash(initial_capacity);
_object_counter = object_counter_init;
auto& [c, pos] = _last_chunk;
c = nullptr;
pos = chunk_tuple::invalid_coords;
}
void world::collect(bool force)
{
const auto len0 = _chunks.size();
for (auto it = _chunks.begin(); it != _chunks.end(); (void)0)
{
const auto& [_, c] = *it;
if (c.empty(force))
it = _chunks.erase(it);
else
++it;
}
auto& [c, pos] = _last_chunk;
c = nullptr;
pos = chunk_tuple::invalid_coords;
const auto len = len0 - _chunks.size();
if (len > 1)
fm_debug("world: collected %zu/%zu chunks", len, len0);
}
void world::do_make_object(const std::shared_ptr<object>& e, global_coords pos, bool sorted)
{
fm_debug_assert(e->id != 0); // todo! add fm_debug2_assert()
fm_debug_assert(e->c);
fm_debug_assert(pos.chunk3() == e->c->coord());
fm_debug_assert(_unique_id && e->c->world()._unique_id == _unique_id);
fm_assert(e->type() != object_type::none);
const_cast<global_coords&>(e->coord) = pos;
auto [_, fresh] = _objects->try_emplace(e->id, e);
if (!fresh) [[unlikely]]
fm_throw("object already initialized id:{}"_cf, e->id);
if (sorted)
e->c->add_object(e);
else
e->c->add_object_unsorted(e);
}
void world::do_kill_object(object_id id)
{
fm_debug_assert(id != 0);
auto cnt = _objects->erase(id);
fm_debug_assert(cnt > 0);
}
std::shared_ptr<object> world::find_object_(object_id id)
{
auto it = _objects->find(id);
auto ret = it == _objects->end() ? nullptr : it->second.lock();
fm_debug_assert(!ret || &ret->c->world() == this);
return ret;
}
void world::set_object_counter(object_id value)
{
fm_assert(value >= _object_counter);
_object_counter = value;
}
void world::throw_on_wrong_object_type(object_id id, object_type actual, object_type expected)
{
fm_throw("object '{}' has wrong object type '{}', should be '{}'"_cf, id, (size_t)actual, (size_t)expected);
}
auto world::neighbors(chunk_coords_ coord) -> std::array<chunk*, 8>
{
std::array<chunk*, 8> ret;
for (auto i = 0u; i < 8; i++)
ret[i] = at(coord + neighbor_offsets[i]);
return ret;
}
critter_proto world::make_player_proto()
{
critter_proto cproto;
cproto.name = "Player"_s;
cproto.speed = 10;
cproto.playable = true;
return cproto;
}
shared_ptr_wrapper<critter> world::ensure_player_character(object_id& id)
{
return ensure_player_character(id, make_player_proto());
}
shared_ptr_wrapper<critter> world::ensure_player_character(object_id& id_, critter_proto p)
{
if (id_)
{
std::shared_ptr<critter> tmp;
if (auto C = find_object(id_); C && C->type() == object_type::critter)
{
auto ptr = std::static_pointer_cast<critter>(C);
return {ptr};
}
}
id_ = 0;
auto id = (object_id)-1;
shared_ptr_wrapper<critter> ret;
for (const auto& [coord, c] : chunks()) // todo use world::_objects
{
for (const auto& eʹ : c.objects())
{
const auto& e = *eʹ;
if (e.type() == object_type::critter)
{
const auto& C = static_cast<const critter&>(e);
if (C.playable)
{
id = std::min(id, C.id);
ret.ptr = std::static_pointer_cast<critter>(eʹ);
}
}
}
}
if (id != (object_id)-1)
id_ = id;
else
{
p.playable = true;
ret.ptr = make_object<critter>(make_id(), global_coords{}, move(p));
id_ = ret.ptr->id;
}
fm_debug_assert(ret.ptr);
return ret;
}
template<typename T>
std::shared_ptr<T> world::find_object(object_id id)
{
static_assert(std::is_base_of_v<object, T>);
// make it a dependent name so that including "src/object.hpp" isn't needed
using U = std::conditional_t<std::is_same_v<T, object>, T, object>;
if (std::shared_ptr<U> ptr = find_object_(id); !ptr)
return {};
else if constexpr(std::is_same_v<T, object>)
return ptr;
else
{
if (!(ptr->type() == object_type_<T>::value)) [[unlikely]]
throw_on_wrong_object_type(id, ptr->type(), object_type_<T>::value);
return static_pointer_cast<T>(move(ptr));
}
}
template std::shared_ptr<object> world::find_object(object_id id);
template std::shared_ptr<critter> world::find_object(object_id id);
template std::shared_ptr<scenery> world::find_object(object_id id);
template std::shared_ptr<light> world::find_object(object_id id);
} // namespace floormat
|