1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
|
#include "app.hpp"
#include "compat/assert.hpp"
#include "compat/function2.hpp"
#include "loader/loader.hpp"
#include "loader/wall-cell.hpp"
#include "src/world.hpp"
#include "src/scenery.hpp"
#include "src/path-search-bbox.hpp"
#include <Magnum/Math/Functions.h>
namespace floormat {
using namespace floormat::detail_astar;
using detail_astar::bbox;
namespace {
constexpr bbox<int> get_value(Vector2i sz, Vector2ui div, rotation r)
{
const int offset_W = iTILE_SIZE2.x()/(int)div.x(), offset_N = iTILE_SIZE2.y()/(int)div.y();
const auto r_ = (uint8_t)r;
CORRADE_ASSUME(r_ <= (uint8_t)rotation_COUNT);
switch (r_)
{
case (uint8_t)rotation::N: {
auto min_N = Vector2i(-sz.x()/2, -offset_N - sz.y()/2 );
auto max_N = Vector2i(min_N.x() + sz.x(), sz.y() - sz.y()/2 );
return {min_N, max_N};
}
case (uint8_t)rotation::S: {
auto min_S = Vector2i(-sz.x()/2, -sz.y() );
auto max_S = Vector2i(min_S.x() + sz.x(), offset_N + sz.y() - sz.y()/2 );
return {min_S, max_S};
}
case (uint8_t)rotation::W: {
auto min_W = Vector2i(-offset_W - sz.x()/2, -sz.y()/2 );
auto max_W = Vector2i(sz.x() - sz.x()/2, min_W.y() + sz.y() );
return {min_W, max_W};
}
case (uint8_t)rotation::E: {
auto min_E = Vector2i(-sz.x()/2, -sz.y()/2 );
auto max_E = Vector2i(offset_W + sz.x() - sz.x()/2, min_E.y() + sz.y() );
return {min_E, max_E};
}
case (uint8_t)rotation_COUNT: {
auto min_C = Vector2i(-sz.x()/2, -sz.y()/2 );
auto max_C = min_C + Vector2i(sz);
return {min_C, max_C};
}
default:
fm_abort("wrong 4-way rotation enum '%d'", (int)r);
}
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4189)
#endif
constexpr bool test_offsets()
{
constexpr auto sz = Vector2i(min_size);
constexpr Vector2i shift = Vector2i(0, 0) * iTILE_SIZE2 + Vector2i(0, 0);
[[maybe_unused]] constexpr auto N = get_value(sz, {1,1}, rotation::N);
[[maybe_unused]] constexpr auto min_N = N.min + shift, max_N = N.max + shift;
[[maybe_unused]] constexpr auto N_min_x = min_N.x(), N_min_y = min_N.y();
[[maybe_unused]] constexpr auto N_max_x = max_N.x(), N_max_y = max_N.y();
[[maybe_unused]] constexpr auto E = get_value(sz, {1,1}, rotation::E);
[[maybe_unused]] constexpr auto min_E = E.min + shift, max_E = E.max + shift;
[[maybe_unused]] constexpr auto E_min_x = min_E.x(), E_min_y = min_E.y();
[[maybe_unused]] constexpr auto E_max_x = max_E.x(), E_max_y = max_E.y();
[[maybe_unused]] constexpr auto S = get_value(sz, {1,1}, rotation::S);
[[maybe_unused]] constexpr auto min_S = S.min + shift, max_S = S.max + shift;
[[maybe_unused]] constexpr auto S_min_x = min_S.x(), S_min_y = min_S.y();
[[maybe_unused]] constexpr auto S_max_x = max_S.x(), S_max_y = max_S.y();
[[maybe_unused]] constexpr auto W = get_value(sz, {1,1}, rotation::W);
[[maybe_unused]] constexpr auto min_W = W.min + shift, max_W = W.max + shift;
[[maybe_unused]] constexpr auto W_min_x = min_W.x(), W_min_y = min_W.y();
[[maybe_unused]] constexpr auto W_max_x = max_W.x(), W_max_y = max_W.y();
return true;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
constexpr bool test_offsets2()
{
using enum rotation;
constexpr auto tile_start = iTILE_SIZE2/-2;
constexpr auto sz = Vector2i(8, 16);
{
constexpr auto bb = get_value(sz, Vector2ui(div_factor), N);
constexpr auto min = tile_start + bb.min, max = tile_start + Vector2i(bb.max);
static_assert(min.x() == -32 - sz.x()/2);
static_assert(max.x() == -32 + sz.x()/2);
static_assert(min.y() == -48 - sz.y()/2);
static_assert(max.y() == -32 + sz.y()/2);
}
{
constexpr auto bb = get_value(sz, Vector2ui(div_factor), W);
constexpr auto min = tile_start + bb.min, max = tile_start + bb.max;
static_assert(min.x() == -32 - 16 - sz.x()/2);
static_assert(max.x() == -32 + sz.x()/2);
static_assert(min.y() == -32 - sz.y()/2);
static_assert(max.y() == -32 + sz.y()/2);
}
return true;
}
struct neighbors final
{
std::array<global_coords, 5> data;
uint8_t size = 0;
};
auto neighbor_tile_bbox(Vector2i coord, Vector2i own_size, Vector2ui div, rotation r) -> bbox<float>
{
own_size = Math::max(own_size, Vector2i(min_size));
const auto shift = coord * iTILE_SIZE2;
auto [min, max] = get_value(own_size, div, r);
return { Vector2(min + shift), Vector2(max + shift) };
}
auto neighbor_tiles(world& w, global_coords coord, Vector2i size, object_id own_id, const pred& p) -> neighbors
{
auto ch = chunk_coords_{ coord.chunk(), coord.z() };
auto pos = Vector2i(coord.local());
size = Math::max(size, div_size);
neighbors ns;
using enum rotation;
constexpr struct {
Vector2i off;
rotation r = {};
} nbs[] = {
{ { 0, -1 }, N },
{ { 1, 0 }, E },
{ { 0, 1 }, S },
{ { -1, 0 }, W },
};
for (auto [off, r] : nbs)
{
auto [min, max] = neighbor_tile_bbox(pos, size, { 1, 1 }, r);
if (path_search::is_passable(w, ch, {min, max}, own_id, p))
ns.data[ns.size++] = { coord + off, {} };
}
return ns;
}
void test_bbox()
{
static constexpr auto is_passable_1 = [](chunk& c, bbox<float> bb) {
return path_search::is_passable_1(c, bb.min, bb.max, (object_id)-1);
};
static constexpr auto is_passable = [](world& w, chunk_coords_ ch, bbox<float> bb) {
return path_search::is_passable(w, ch, bb, (object_id)-1);
};
static constexpr auto bbox = [](Vector2i coord, rotation r) {
return neighbor_tile_bbox(coord, {}, { 1, 1 }, r);
};
constexpr auto neighbors = [](world& w, chunk_coords_ ch, Vector2i pos) {
return neighbor_tiles(w, { ch, pos }, {}, (object_id)-1, never_continue());
};
const auto wall = loader.invalid_wall_atlas().atlas;
const auto table = loader.scenery("table1");
{
constexpr auto coord1 = chunk_coords_{10, 11, 0},
coord2 = chunk_coords_{10, 12, 0};
constexpr auto _15 = TILE_MAX_DIM-1;
using enum rotation;
{
auto w = world();
[[maybe_unused]] auto& c12 = w[coord2];
[[maybe_unused]] auto& c11 = w[coord1];
c12[{0, 0}].wall_north() = { wall, 0};
fm_assert( !is_passable_1(c12, bbox({}, N)) );
fm_assert( is_passable_1(c12, bbox({}, E)) );
//fm_assert( is_passable_1(c12, bbox({}, S)) );
fm_assert( is_passable_1(c12, bbox({}, W)) );
fm_assert( is_passable(w, coord1, bbox({0, _15}, N)) );
fm_assert( is_passable(w, coord1, bbox({0, _15}, E)) );
fm_assert( !is_passable(w, coord1, bbox({0, _15}, S)) );
fm_assert( is_passable(w, coord1, bbox({0, _15}, W)) );
}
}
{
using enum rotation;
constexpr auto C = rotation_COUNT;
constexpr auto ch = chunk_coords_{21, 22, 0};
auto w = world();
auto& c = w[ch];
c[{8, 7}].wall_north() = { wall,0};
c[{8, 9}].wall_north() = { wall,0};
fm_assert( is_passable_1(c, bbox({8, 6}, N)) );
fm_assert( !is_passable_1(c, bbox({8, 6}, S)) );
fm_assert( !is_passable_1(c, bbox({8, 7}, N)) );
fm_assert( is_passable_1(c, bbox({8, 8}, N)) );
fm_assert( is_passable_1(c, bbox({8, 8}, E)) );
fm_assert( !is_passable_1(c, bbox({8, 8}, S)) );
fm_assert( is_passable_1(c, bbox({8, 8}, W)) );
fm_assert(neighbors(w, ch, {8, 8}).size == 3);
c[{8, 8}].wall_north() = { wall,0};
c.mark_passability_modified();
fm_assert( is_passable_1(c, bbox({8, 8}, C)) );
fm_assert( !is_passable_1(c, bbox({8, 7}, S)) );
fm_assert( !is_passable_1(c, bbox({8, 8}, N)) );
fm_assert( is_passable_1(c, bbox({8, 8}, E)) );
fm_assert( !is_passable_1(c, bbox({8, 8}, S)) );
fm_assert( is_passable_1(c, bbox({8, 8}, W)) );
fm_assert(neighbors(w, ch, {8, 8}).size == 2);
}
{
using enum rotation;
constexpr auto ch = chunk_coords_{0, 0, 0};
auto w = world();
auto& c = test_app::make_test_chunk(w, ch);
constexpr auto is_passable_NESW = [](chunk& c, Vector2i coord, std::array<bool, 4> dirs)
{
fm_assert(is_passable_1(c, bbox(coord, N)) == dirs[0]);
fm_assert(is_passable_1(c, bbox(coord, E)) == dirs[1]);
//fm_assert(is_passable_1(c, bbox(coord, S)) == dirs[2]);
fm_assert(is_passable_1(c, bbox(coord, W)) == dirs[3]);
};
is_passable_NESW(c, {8, 8}, { false, false, false, false });
is_passable_NESW(c, {8, 9}, { false, true, true, true });
is_passable_NESW(c, {2, 4}, { true, false, true, true });
is_passable_NESW(c, {4, 4}, { true, true, true, false });
fm_assert(neighbors(w, ch, {8, 8}).size == 0);
//fm_assert(neighbors(w, ch, {8, 9}).size == 3);
fm_assert(neighbors(w, ch, {8, 9}).size >= 2);
fm_assert(neighbors(w, ch, {2, 4}).size == 3);
fm_assert(neighbors(w, ch, {4, 4}).size == 3);
}
fm_assert(test_offsets2());
fm_assert(test_offsets());
#if 0
{
constexpr auto ch = chunk_coords_{};
auto w = world();
auto& c = w[ch];
constexpr size_t K = 8;
const auto wall = tile_image_proto{metal2, 0};
c[{0, 0 }].wall_north() = wall;
c[{0, 0 }].wall_west() = wall;
c[{K, K }].wall_north() = { metal2, 0 };
c[{K, K }].wall_west() = { metal2, 0 };
c[{K, K+1}].wall_north() = { metal2, 0 };
c[{K+1, K }].wall_west() = { metal2, 0 };
path_search search;
search.ensure_allocated({}, {});
search.fill_cache_(w, {0, 0, 0}, {}, {});
constexpr auto check_N = [&](path_search& search, chunk_coords ch, local_coords tile, Vector2i subdiv) {
auto c = search.cache_chunk_index(ch);
auto t = search.cache_tile_index(tile, subdiv);
return search.cache.array[c].can_go_north[t];
};
constexpr auto check_W = [&](path_search& search, chunk_coords ch, local_coords tile, Vector2i subdiv) {
auto c = search.cache_chunk_index(ch);
auto t = search.cache_tile_index(tile, subdiv);
return search.cache.array[c].can_go_west[t];
};
static_assert(div == 4);
constexpr Vector2i s00 = {0,0}, s01 = {0,2}, s10 = {2,0}, s11 = {2,2}, s22 = {3,3};
fm_assert( !check_N(search, {}, { 0, 0}, s10 ));
fm_assert( !check_W(search, {}, { 0, 0}, s01 ));
fm_assert( check_N(search, {}, { 0, 1}, s10 ));
fm_assert( check_W(search, {}, { 1, 0}, s01 ));
fm_assert( !check_N(search, {}, { 0, 1}, s00 ));
fm_assert( !check_W(search, {}, { 1, 0}, s00 ));
fm_assert( check_W(search, {}, {K-1, K }, s01 ));
fm_assert( check_N(search, {}, {K-1, K }, s10 ));
fm_assert( check_W(search, {}, {K, K-1}, s01 ));
fm_assert( check_N(search, {}, {K, K-1}, s10 ));
fm_assert( check_W(search, {}, {K-1, K }, s22 ));
fm_assert( check_N(search, {}, {K-1, K }, s22 ));
fm_assert( check_W(search, {}, {K, K-1}, s22 ));
fm_assert( check_N(search, {}, {K, K-1}, s22 ));
fm_assert( !check_N(search, {}, {K, K }, s10 ));
fm_assert( !check_W(search, {}, {K, K }, s01 ));
fm_assert( check_N(search, {}, {K, K }, s11 ));
fm_assert( check_W(search, {}, {K, K }, s11 ));
fm_assert( !check_W(search, {}, {K+1, K }, s01 ));
fm_assert( check_N(search, {}, {K+1, K }, s10 ));
fm_assert( !check_N(search, {}, {K, K+1}, s10 ));
fm_assert( check_W(search, {}, {K, K+1}, s01 ));
fm_assert( check_N(search, {}, {K+2, K }, s10 ));
fm_assert( check_W(search, {}, {K+2, K }, s01 ));
fm_assert( check_N(search, {}, {K, K+2}, s10 ));
fm_assert( check_W(search, {}, {K, K+2}, s01 ));
fm_assert( check_N(search, {}, {K+1, K+2 }, s00 ));
fm_assert( check_N(search, {}, {K+1, K+2 }, s10 ));
fm_assert( check_W(search, {}, {K+1, K+2 }, s00 ));
fm_assert( check_N(search, {}, {K+2, K+2 }, s00 ));
fm_assert( check_W(search, {}, {K+2, K+2 }, s00 ));
}
#endif
}
} // namespace
void test_app::test_astar()
{
test_bbox();
}
} // namespace floormat
|