diff options
Diffstat (limited to 'eigen/Eigen/src/CholmodSupport/CholmodSupport.h')
-rw-r--r-- | eigen/Eigen/src/CholmodSupport/CholmodSupport.h | 607 |
1 files changed, 607 insertions, 0 deletions
diff --git a/eigen/Eigen/src/CholmodSupport/CholmodSupport.h b/eigen/Eigen/src/CholmodSupport/CholmodSupport.h new file mode 100644 index 0000000..99dbe17 --- /dev/null +++ b/eigen/Eigen/src/CholmodSupport/CholmodSupport.h @@ -0,0 +1,607 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CHOLMODSUPPORT_H +#define EIGEN_CHOLMODSUPPORT_H + +namespace Eigen { + +namespace internal { + +template<typename Scalar, typename CholmodType> +void cholmod_configure_matrix(CholmodType& mat) +{ + if (internal::is_same<Scalar,float>::value) + { + mat.xtype = CHOLMOD_REAL; + mat.dtype = CHOLMOD_SINGLE; + } + else if (internal::is_same<Scalar,double>::value) + { + mat.xtype = CHOLMOD_REAL; + mat.dtype = CHOLMOD_DOUBLE; + } + else if (internal::is_same<Scalar,std::complex<float> >::value) + { + mat.xtype = CHOLMOD_COMPLEX; + mat.dtype = CHOLMOD_SINGLE; + } + else if (internal::is_same<Scalar,std::complex<double> >::value) + { + mat.xtype = CHOLMOD_COMPLEX; + mat.dtype = CHOLMOD_DOUBLE; + } + else + { + eigen_assert(false && "Scalar type not supported by CHOLMOD"); + } +} + +} // namespace internal + +/** Wraps the Eigen sparse matrix \a mat into a Cholmod sparse matrix object. + * Note that the data are shared. + */ +template<typename _Scalar, int _Options, typename _Index> +cholmod_sparse viewAsCholmod(SparseMatrix<_Scalar,_Options,_Index>& mat) +{ + cholmod_sparse res; + res.nzmax = mat.nonZeros(); + res.nrow = mat.rows();; + res.ncol = mat.cols(); + res.p = mat.outerIndexPtr(); + res.i = mat.innerIndexPtr(); + res.x = mat.valuePtr(); + res.z = 0; + res.sorted = 1; + if(mat.isCompressed()) + { + res.packed = 1; + res.nz = 0; + } + else + { + res.packed = 0; + res.nz = mat.innerNonZeroPtr(); + } + + res.dtype = 0; + res.stype = -1; + + if (internal::is_same<_Index,int>::value) + { + res.itype = CHOLMOD_INT; + } + else if (internal::is_same<_Index,SuiteSparse_long>::value) + { + res.itype = CHOLMOD_LONG; + } + else + { + eigen_assert(false && "Index type not supported yet"); + } + + // setup res.xtype + internal::cholmod_configure_matrix<_Scalar>(res); + + res.stype = 0; + + return res; +} + +template<typename _Scalar, int _Options, typename _Index> +const cholmod_sparse viewAsCholmod(const SparseMatrix<_Scalar,_Options,_Index>& mat) +{ + cholmod_sparse res = viewAsCholmod(mat.const_cast_derived()); + return res; +} + +/** Returns a view of the Eigen sparse matrix \a mat as Cholmod sparse matrix. + * The data are not copied but shared. */ +template<typename _Scalar, int _Options, typename _Index, unsigned int UpLo> +cholmod_sparse viewAsCholmod(const SparseSelfAdjointView<SparseMatrix<_Scalar,_Options,_Index>, UpLo>& mat) +{ + cholmod_sparse res = viewAsCholmod(mat.matrix().const_cast_derived()); + + if(UpLo==Upper) res.stype = 1; + if(UpLo==Lower) res.stype = -1; + + return res; +} + +/** Returns a view of the Eigen \b dense matrix \a mat as Cholmod dense matrix. + * The data are not copied but shared. */ +template<typename Derived> +cholmod_dense viewAsCholmod(MatrixBase<Derived>& mat) +{ + EIGEN_STATIC_ASSERT((internal::traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + typedef typename Derived::Scalar Scalar; + + cholmod_dense res; + res.nrow = mat.rows(); + res.ncol = mat.cols(); + res.nzmax = res.nrow * res.ncol; + res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride(); + res.x = (void*)(mat.derived().data()); + res.z = 0; + + internal::cholmod_configure_matrix<Scalar>(res); + + return res; +} + +/** Returns a view of the Cholmod sparse matrix \a cm as an Eigen sparse matrix. + * The data are not copied but shared. */ +template<typename Scalar, int Flags, typename Index> +MappedSparseMatrix<Scalar,Flags,Index> viewAsEigen(cholmod_sparse& cm) +{ + return MappedSparseMatrix<Scalar,Flags,Index> + (cm.nrow, cm.ncol, static_cast<Index*>(cm.p)[cm.ncol], + static_cast<Index*>(cm.p), static_cast<Index*>(cm.i),static_cast<Scalar*>(cm.x) ); +} + +enum CholmodMode { + CholmodAuto, CholmodSimplicialLLt, CholmodSupernodalLLt, CholmodLDLt +}; + + +/** \ingroup CholmodSupport_Module + * \class CholmodBase + * \brief The base class for the direct Cholesky factorization of Cholmod + * \sa class CholmodSupernodalLLT, class CholmodSimplicialLDLT, class CholmodSimplicialLLT + */ +template<typename _MatrixType, int _UpLo, typename Derived> +class CholmodBase : internal::noncopyable +{ + public: + typedef _MatrixType MatrixType; + enum { UpLo = _UpLo }; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef MatrixType CholMatrixType; + typedef typename MatrixType::Index Index; + + public: + + CholmodBase() + : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) + { + m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); + cholmod_start(&m_cholmod); + } + + CholmodBase(const MatrixType& matrix) + : m_cholmodFactor(0), m_info(Success), m_isInitialized(false) + { + m_shiftOffset[0] = m_shiftOffset[1] = RealScalar(0.0); + cholmod_start(&m_cholmod); + compute(matrix); + } + + ~CholmodBase() + { + if(m_cholmodFactor) + cholmod_free_factor(&m_cholmodFactor, &m_cholmod); + cholmod_finish(&m_cholmod); + } + + inline Index cols() const { return m_cholmodFactor->n; } + inline Index rows() const { return m_cholmodFactor->n; } + + Derived& derived() { return *static_cast<Derived*>(this); } + const Derived& derived() const { return *static_cast<const Derived*>(this); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + Derived& compute(const MatrixType& matrix) + { + analyzePattern(matrix); + factorize(matrix); + return derived(); + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::solve_retval<CholmodBase, Rhs> + solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(rows()==b.rows() + && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); + return internal::solve_retval<CholmodBase, Rhs>(*this, b.derived()); + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::sparse_solve_retval<CholmodBase, Rhs> + solve(const SparseMatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "LLT is not initialized."); + eigen_assert(rows()==b.rows() + && "CholmodDecomposition::solve(): invalid number of rows of the right hand side matrix b"); + return internal::sparse_solve_retval<CholmodBase, Rhs>(*this, b.derived()); + } + + /** Performs a symbolic decomposition on the sparsity pattern of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + if(m_cholmodFactor) + { + cholmod_free_factor(&m_cholmodFactor, &m_cholmod); + m_cholmodFactor = 0; + } + cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); + m_cholmodFactor = cholmod_analyze(&A, &m_cholmod); + + this->m_isInitialized = true; + this->m_info = Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must have the same sparsity pattern as the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + eigen_assert(m_analysisIsOk && "You must first call analyzePattern()"); + cholmod_sparse A = viewAsCholmod(matrix.template selfadjointView<UpLo>()); + cholmod_factorize_p(&A, m_shiftOffset, 0, 0, m_cholmodFactor, &m_cholmod); + + // If the factorization failed, minor is the column at which it did. On success minor == n. + this->m_info = (m_cholmodFactor->minor == m_cholmodFactor->n ? Success : NumericalIssue); + m_factorizationIsOk = true; + } + + /** Returns a reference to the Cholmod's configuration structure to get a full control over the performed operations. + * See the Cholmod user guide for details. */ + cholmod_common& cholmod() { return m_cholmod; } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal */ + template<typename Rhs,typename Dest> + void _solve(const MatrixBase<Rhs> &b, MatrixBase<Dest> &dest) const + { + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + const Index size = m_cholmodFactor->n; + EIGEN_UNUSED_VARIABLE(size); + eigen_assert(size==b.rows()); + + // note: cd stands for Cholmod Dense + Rhs& b_ref(b.const_cast_derived()); + cholmod_dense b_cd = viewAsCholmod(b_ref); + cholmod_dense* x_cd = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &b_cd, &m_cholmod); + if(!x_cd) + { + this->m_info = NumericalIssue; + } + // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) + dest = Matrix<Scalar,Dest::RowsAtCompileTime,Dest::ColsAtCompileTime>::Map(reinterpret_cast<Scalar*>(x_cd->x),b.rows(),b.cols()); + cholmod_free_dense(&x_cd, &m_cholmod); + } + + /** \internal */ + template<typename RhsScalar, int RhsOptions, typename RhsIndex, typename DestScalar, int DestOptions, typename DestIndex> + void _solve(const SparseMatrix<RhsScalar,RhsOptions,RhsIndex> &b, SparseMatrix<DestScalar,DestOptions,DestIndex> &dest) const + { + eigen_assert(m_factorizationIsOk && "The decomposition is not in a valid state for solving, you must first call either compute() or symbolic()/numeric()"); + const Index size = m_cholmodFactor->n; + EIGEN_UNUSED_VARIABLE(size); + eigen_assert(size==b.rows()); + + // note: cs stands for Cholmod Sparse + cholmod_sparse b_cs = viewAsCholmod(b); + cholmod_sparse* x_cs = cholmod_spsolve(CHOLMOD_A, m_cholmodFactor, &b_cs, &m_cholmod); + if(!x_cs) + { + this->m_info = NumericalIssue; + } + // TODO optimize this copy by swapping when possible (be careful with alignment, etc.) + dest = viewAsEigen<DestScalar,DestOptions,DestIndex>(*x_cs); + cholmod_free_sparse(&x_cs, &m_cholmod); + } + #endif // EIGEN_PARSED_BY_DOXYGEN + + + /** Sets the shift parameter that will be used to adjust the diagonal coefficients during the numerical factorization. + * + * During the numerical factorization, an offset term is added to the diagonal coefficients:\n + * \c d_ii = \a offset + \c d_ii + * + * The default is \a offset=0. + * + * \returns a reference to \c *this. + */ + Derived& setShift(const RealScalar& offset) + { + m_shiftOffset[0] = offset; + return derived(); + } + + template<typename Stream> + void dumpMemory(Stream& /*s*/) + {} + + protected: + mutable cholmod_common m_cholmod; + cholmod_factor* m_cholmodFactor; + RealScalar m_shiftOffset[2]; + mutable ComputationInfo m_info; + bool m_isInitialized; + int m_factorizationIsOk; + int m_analysisIsOk; +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodSimplicialLLT + * \brief A simplicial direct Cholesky (LLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a simplicial LL^T Cholesky factorization + * using the Cholmod library. + * This simplicial variant is equivalent to Eigen's built-in SimplicialLLT class. Therefore, it has little practical interest. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLLT + */ +template<typename _MatrixType, int _UpLo = Lower> +class CholmodSimplicialLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSimplicialLLT() : Base() { init(); } + + CholmodSimplicialLLT(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~CholmodSimplicialLLT() {} + protected: + void init() + { + m_cholmod.final_asis = 0; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + m_cholmod.final_ll = 1; + } +}; + + +/** \ingroup CholmodSupport_Module + * \class CholmodSimplicialLDLT + * \brief A simplicial direct Cholesky (LDLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a simplicial LDL^T Cholesky factorization + * using the Cholmod library. + * This simplicial variant is equivalent to Eigen's built-in SimplicialLDLT class. Therefore, it has little practical interest. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \sa \ref TutorialSparseDirectSolvers, class CholmodSupernodalLLT, class SimplicialLDLT + */ +template<typename _MatrixType, int _UpLo = Lower> +class CholmodSimplicialLDLT : public CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSimplicialLDLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSimplicialLDLT() : Base() { init(); } + + CholmodSimplicialLDLT(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~CholmodSimplicialLDLT() {} + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + } +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodSupernodalLLT + * \brief A supernodal Cholesky (LLT) factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a supernodal LL^T Cholesky factorization + * using the Cholmod library. + * This supernodal variant performs best on dense enough problems, e.g., 3D FEM, or very high order 2D FEM. + * The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \sa \ref TutorialSparseDirectSolvers + */ +template<typename _MatrixType, int _UpLo = Lower> +class CholmodSupernodalLLT : public CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodSupernodalLLT> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodSupernodalLLT() : Base() { init(); } + + CholmodSupernodalLLT(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~CholmodSupernodalLLT() {} + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SUPERNODAL; + } +}; + +/** \ingroup CholmodSupport_Module + * \class CholmodDecomposition + * \brief A general Cholesky factorization and solver based on Cholmod + * + * This class allows to solve for A.X = B sparse linear problems via a LL^T or LDL^T Cholesky factorization + * using the Cholmod library. The sparse matrix A must be selfadjoint and positive definite. The vectors or matrices + * X and B can be either dense or sparse. + * + * This variant permits to change the underlying Cholesky method at runtime. + * On the other hand, it does not provide access to the result of the factorization. + * The default is to let Cholmod automatically choose between a simplicial and supernodal factorization. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower + * or Upper. Default is Lower. + * + * This class supports all kind of SparseMatrix<>: row or column major; upper, lower, or both; compressed or non compressed. + * + * \sa \ref TutorialSparseDirectSolvers + */ +template<typename _MatrixType, int _UpLo = Lower> +class CholmodDecomposition : public CholmodBase<_MatrixType, _UpLo, CholmodDecomposition<_MatrixType, _UpLo> > +{ + typedef CholmodBase<_MatrixType, _UpLo, CholmodDecomposition> Base; + using Base::m_cholmod; + + public: + + typedef _MatrixType MatrixType; + + CholmodDecomposition() : Base() { init(); } + + CholmodDecomposition(const MatrixType& matrix) : Base() + { + init(); + Base::compute(matrix); + } + + ~CholmodDecomposition() {} + + void setMode(CholmodMode mode) + { + switch(mode) + { + case CholmodAuto: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_AUTO; + break; + case CholmodSimplicialLLt: + m_cholmod.final_asis = 0; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + m_cholmod.final_ll = 1; + break; + case CholmodSupernodalLLt: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SUPERNODAL; + break; + case CholmodLDLt: + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_SIMPLICIAL; + break; + default: + break; + } + } + protected: + void init() + { + m_cholmod.final_asis = 1; + m_cholmod.supernodal = CHOLMOD_AUTO; + } +}; + +namespace internal { + +template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs> +struct solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> + : solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> +{ + typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +template<typename _MatrixType, int _UpLo, typename Derived, typename Rhs> +struct sparse_solve_retval<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> + : sparse_solve_retval_base<CholmodBase<_MatrixType,_UpLo,Derived>, Rhs> +{ + typedef CholmodBase<_MatrixType,_UpLo,Derived> Dec; + EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +} // end namespace internal + +} // end namespace Eigen + +#endif // EIGEN_CHOLMODSUPPORT_H |