diff options
Diffstat (limited to 'eigen/Eigen/src/Eigen2Support/SVD.h')
-rw-r--r-- | eigen/Eigen/src/Eigen2Support/SVD.h | 637 |
1 files changed, 637 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Eigen2Support/SVD.h b/eigen/Eigen/src/Eigen2Support/SVD.h new file mode 100644 index 0000000..3d03d22 --- /dev/null +++ b/eigen/Eigen/src/Eigen2Support/SVD.h @@ -0,0 +1,637 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN2_SVD_H +#define EIGEN2_SVD_H + +namespace Eigen { + +/** \ingroup SVD_Module + * \nonstableyet + * + * \class SVD + * + * \brief Standard SVD decomposition of a matrix and associated features + * + * \param MatrixType the type of the matrix of which we are computing the SVD decomposition + * + * This class performs a standard SVD decomposition of a real matrix A of size \c M x \c N + * with \c M \>= \c N. + * + * + * \sa MatrixBase::SVD() + */ +template<typename MatrixType> class SVD +{ + private: + typedef typename MatrixType::Scalar Scalar; + typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; + + enum { + PacketSize = internal::packet_traits<Scalar>::size, + AlignmentMask = int(PacketSize)-1, + MinSize = EIGEN_SIZE_MIN_PREFER_DYNAMIC(MatrixType::RowsAtCompileTime, MatrixType::ColsAtCompileTime) + }; + + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVector; + typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> RowVector; + + typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MinSize> MatrixUType; + typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixVType; + typedef Matrix<Scalar, MinSize, 1> SingularValuesType; + + public: + + SVD() {} // a user who relied on compiler-generated default compiler reported problems with MSVC in 2.0.7 + + SVD(const MatrixType& matrix) + : m_matU(matrix.rows(), (std::min)(matrix.rows(), matrix.cols())), + m_matV(matrix.cols(),matrix.cols()), + m_sigma((std::min)(matrix.rows(),matrix.cols())) + { + compute(matrix); + } + + template<typename OtherDerived, typename ResultType> + bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const; + + const MatrixUType& matrixU() const { return m_matU; } + const SingularValuesType& singularValues() const { return m_sigma; } + const MatrixVType& matrixV() const { return m_matV; } + + void compute(const MatrixType& matrix); + SVD& sort(); + + template<typename UnitaryType, typename PositiveType> + void computeUnitaryPositive(UnitaryType *unitary, PositiveType *positive) const; + template<typename PositiveType, typename UnitaryType> + void computePositiveUnitary(PositiveType *positive, UnitaryType *unitary) const; + template<typename RotationType, typename ScalingType> + void computeRotationScaling(RotationType *unitary, ScalingType *positive) const; + template<typename ScalingType, typename RotationType> + void computeScalingRotation(ScalingType *positive, RotationType *unitary) const; + + protected: + /** \internal */ + MatrixUType m_matU; + /** \internal */ + MatrixVType m_matV; + /** \internal */ + SingularValuesType m_sigma; +}; + +/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix + * + * \note this code has been adapted from JAMA (public domain) + */ +template<typename MatrixType> +void SVD<MatrixType>::compute(const MatrixType& matrix) +{ + const int m = matrix.rows(); + const int n = matrix.cols(); + const int nu = (std::min)(m,n); + ei_assert(m>=n && "In Eigen 2.0, SVD only works for MxN matrices with M>=N. Sorry!"); + ei_assert(m>1 && "In Eigen 2.0, SVD doesn't work on 1x1 matrices"); + + m_matU.resize(m, nu); + m_matU.setZero(); + m_sigma.resize((std::min)(m,n)); + m_matV.resize(n,n); + + RowVector e(n); + ColVector work(m); + MatrixType matA(matrix); + const bool wantu = true; + const bool wantv = true; + int i=0, j=0, k=0; + + // Reduce A to bidiagonal form, storing the diagonal elements + // in s and the super-diagonal elements in e. + int nct = (std::min)(m-1,n); + int nrt = (std::max)(0,(std::min)(n-2,m)); + for (k = 0; k < (std::max)(nct,nrt); ++k) + { + if (k < nct) + { + // Compute the transformation for the k-th column and + // place the k-th diagonal in m_sigma[k]. + m_sigma[k] = matA.col(k).end(m-k).norm(); + if (m_sigma[k] != 0.0) // FIXME + { + if (matA(k,k) < 0.0) + m_sigma[k] = -m_sigma[k]; + matA.col(k).end(m-k) /= m_sigma[k]; + matA(k,k) += 1.0; + } + m_sigma[k] = -m_sigma[k]; + } + + for (j = k+1; j < n; ++j) + { + if ((k < nct) && (m_sigma[k] != 0.0)) + { + // Apply the transformation. + Scalar t = matA.col(k).end(m-k).eigen2_dot(matA.col(j).end(m-k)); // FIXME dot product or cwise prod + .sum() ?? + t = -t/matA(k,k); + matA.col(j).end(m-k) += t * matA.col(k).end(m-k); + } + + // Place the k-th row of A into e for the + // subsequent calculation of the row transformation. + e[j] = matA(k,j); + } + + // Place the transformation in U for subsequent back multiplication. + if (wantu & (k < nct)) + m_matU.col(k).end(m-k) = matA.col(k).end(m-k); + + if (k < nrt) + { + // Compute the k-th row transformation and place the + // k-th super-diagonal in e[k]. + e[k] = e.end(n-k-1).norm(); + if (e[k] != 0.0) + { + if (e[k+1] < 0.0) + e[k] = -e[k]; + e.end(n-k-1) /= e[k]; + e[k+1] += 1.0; + } + e[k] = -e[k]; + if ((k+1 < m) & (e[k] != 0.0)) + { + // Apply the transformation. + work.end(m-k-1) = matA.corner(BottomRight,m-k-1,n-k-1) * e.end(n-k-1); + for (j = k+1; j < n; ++j) + matA.col(j).end(m-k-1) += (-e[j]/e[k+1]) * work.end(m-k-1); + } + + // Place the transformation in V for subsequent back multiplication. + if (wantv) + m_matV.col(k).end(n-k-1) = e.end(n-k-1); + } + } + + + // Set up the final bidiagonal matrix or order p. + int p = (std::min)(n,m+1); + if (nct < n) + m_sigma[nct] = matA(nct,nct); + if (m < p) + m_sigma[p-1] = 0.0; + if (nrt+1 < p) + e[nrt] = matA(nrt,p-1); + e[p-1] = 0.0; + + // If required, generate U. + if (wantu) + { + for (j = nct; j < nu; ++j) + { + m_matU.col(j).setZero(); + m_matU(j,j) = 1.0; + } + for (k = nct-1; k >= 0; k--) + { + if (m_sigma[k] != 0.0) + { + for (j = k+1; j < nu; ++j) + { + Scalar t = m_matU.col(k).end(m-k).eigen2_dot(m_matU.col(j).end(m-k)); // FIXME is it really a dot product we want ? + t = -t/m_matU(k,k); + m_matU.col(j).end(m-k) += t * m_matU.col(k).end(m-k); + } + m_matU.col(k).end(m-k) = - m_matU.col(k).end(m-k); + m_matU(k,k) = Scalar(1) + m_matU(k,k); + if (k-1>0) + m_matU.col(k).start(k-1).setZero(); + } + else + { + m_matU.col(k).setZero(); + m_matU(k,k) = 1.0; + } + } + } + + // If required, generate V. + if (wantv) + { + for (k = n-1; k >= 0; k--) + { + if ((k < nrt) & (e[k] != 0.0)) + { + for (j = k+1; j < nu; ++j) + { + Scalar t = m_matV.col(k).end(n-k-1).eigen2_dot(m_matV.col(j).end(n-k-1)); // FIXME is it really a dot product we want ? + t = -t/m_matV(k+1,k); + m_matV.col(j).end(n-k-1) += t * m_matV.col(k).end(n-k-1); + } + } + m_matV.col(k).setZero(); + m_matV(k,k) = 1.0; + } + } + + // Main iteration loop for the singular values. + int pp = p-1; + int iter = 0; + Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52)); + while (p > 0) + { + int k=0; + int kase=0; + + // Here is where a test for too many iterations would go. + + // This section of the program inspects for + // negligible elements in the s and e arrays. On + // completion the variables kase and k are set as follows. + + // kase = 1 if s(p) and e[k-1] are negligible and k<p + // kase = 2 if s(k) is negligible and k<p + // kase = 3 if e[k-1] is negligible, k<p, and + // s(k), ..., s(p) are not negligible (qr step). + // kase = 4 if e(p-1) is negligible (convergence). + + for (k = p-2; k >= -1; --k) + { + if (k == -1) + break; + if (ei_abs(e[k]) <= eps*(ei_abs(m_sigma[k]) + ei_abs(m_sigma[k+1]))) + { + e[k] = 0.0; + break; + } + } + if (k == p-2) + { + kase = 4; + } + else + { + int ks; + for (ks = p-1; ks >= k; --ks) + { + if (ks == k) + break; + Scalar t = (ks != p ? ei_abs(e[ks]) : Scalar(0)) + (ks != k+1 ? ei_abs(e[ks-1]) : Scalar(0)); + if (ei_abs(m_sigma[ks]) <= eps*t) + { + m_sigma[ks] = 0.0; + break; + } + } + if (ks == k) + { + kase = 3; + } + else if (ks == p-1) + { + kase = 1; + } + else + { + kase = 2; + k = ks; + } + } + ++k; + + // Perform the task indicated by kase. + switch (kase) + { + + // Deflate negligible s(p). + case 1: + { + Scalar f(e[p-2]); + e[p-2] = 0.0; + for (j = p-2; j >= k; --j) + { + Scalar t(numext::hypot(m_sigma[j],f)); + Scalar cs(m_sigma[j]/t); + Scalar sn(f/t); + m_sigma[j] = t; + if (j != k) + { + f = -sn*e[j-1]; + e[j-1] = cs*e[j-1]; + } + if (wantv) + { + for (i = 0; i < n; ++i) + { + t = cs*m_matV(i,j) + sn*m_matV(i,p-1); + m_matV(i,p-1) = -sn*m_matV(i,j) + cs*m_matV(i,p-1); + m_matV(i,j) = t; + } + } + } + } + break; + + // Split at negligible s(k). + case 2: + { + Scalar f(e[k-1]); + e[k-1] = 0.0; + for (j = k; j < p; ++j) + { + Scalar t(numext::hypot(m_sigma[j],f)); + Scalar cs( m_sigma[j]/t); + Scalar sn(f/t); + m_sigma[j] = t; + f = -sn*e[j]; + e[j] = cs*e[j]; + if (wantu) + { + for (i = 0; i < m; ++i) + { + t = cs*m_matU(i,j) + sn*m_matU(i,k-1); + m_matU(i,k-1) = -sn*m_matU(i,j) + cs*m_matU(i,k-1); + m_matU(i,j) = t; + } + } + } + } + break; + + // Perform one qr step. + case 3: + { + // Calculate the shift. + Scalar scale = (std::max)((std::max)((std::max)((std::max)( + ei_abs(m_sigma[p-1]),ei_abs(m_sigma[p-2])),ei_abs(e[p-2])), + ei_abs(m_sigma[k])),ei_abs(e[k])); + Scalar sp = m_sigma[p-1]/scale; + Scalar spm1 = m_sigma[p-2]/scale; + Scalar epm1 = e[p-2]/scale; + Scalar sk = m_sigma[k]/scale; + Scalar ek = e[k]/scale; + Scalar b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)/Scalar(2); + Scalar c = (sp*epm1)*(sp*epm1); + Scalar shift(0); + if ((b != 0.0) || (c != 0.0)) + { + shift = ei_sqrt(b*b + c); + if (b < 0.0) + shift = -shift; + shift = c/(b + shift); + } + Scalar f = (sk + sp)*(sk - sp) + shift; + Scalar g = sk*ek; + + // Chase zeros. + + for (j = k; j < p-1; ++j) + { + Scalar t = numext::hypot(f,g); + Scalar cs = f/t; + Scalar sn = g/t; + if (j != k) + e[j-1] = t; + f = cs*m_sigma[j] + sn*e[j]; + e[j] = cs*e[j] - sn*m_sigma[j]; + g = sn*m_sigma[j+1]; + m_sigma[j+1] = cs*m_sigma[j+1]; + if (wantv) + { + for (i = 0; i < n; ++i) + { + t = cs*m_matV(i,j) + sn*m_matV(i,j+1); + m_matV(i,j+1) = -sn*m_matV(i,j) + cs*m_matV(i,j+1); + m_matV(i,j) = t; + } + } + t = numext::hypot(f,g); + cs = f/t; + sn = g/t; + m_sigma[j] = t; + f = cs*e[j] + sn*m_sigma[j+1]; + m_sigma[j+1] = -sn*e[j] + cs*m_sigma[j+1]; + g = sn*e[j+1]; + e[j+1] = cs*e[j+1]; + if (wantu && (j < m-1)) + { + for (i = 0; i < m; ++i) + { + t = cs*m_matU(i,j) + sn*m_matU(i,j+1); + m_matU(i,j+1) = -sn*m_matU(i,j) + cs*m_matU(i,j+1); + m_matU(i,j) = t; + } + } + } + e[p-2] = f; + iter = iter + 1; + } + break; + + // Convergence. + case 4: + { + // Make the singular values positive. + if (m_sigma[k] <= 0.0) + { + m_sigma[k] = m_sigma[k] < Scalar(0) ? -m_sigma[k] : Scalar(0); + if (wantv) + m_matV.col(k).start(pp+1) = -m_matV.col(k).start(pp+1); + } + + // Order the singular values. + while (k < pp) + { + if (m_sigma[k] >= m_sigma[k+1]) + break; + Scalar t = m_sigma[k]; + m_sigma[k] = m_sigma[k+1]; + m_sigma[k+1] = t; + if (wantv && (k < n-1)) + m_matV.col(k).swap(m_matV.col(k+1)); + if (wantu && (k < m-1)) + m_matU.col(k).swap(m_matU.col(k+1)); + ++k; + } + iter = 0; + p--; + } + break; + } // end big switch + } // end iterations +} + +template<typename MatrixType> +SVD<MatrixType>& SVD<MatrixType>::sort() +{ + int mu = m_matU.rows(); + int mv = m_matV.rows(); + int n = m_matU.cols(); + + for (int i=0; i<n; ++i) + { + int k = i; + Scalar p = m_sigma.coeff(i); + + for (int j=i+1; j<n; ++j) + { + if (m_sigma.coeff(j) > p) + { + k = j; + p = m_sigma.coeff(j); + } + } + if (k != i) + { + m_sigma.coeffRef(k) = m_sigma.coeff(i); // i.e. + m_sigma.coeffRef(i) = p; // swaps the i-th and the k-th elements + + int j = mu; + for(int s=0; j!=0; ++s, --j) + std::swap(m_matU.coeffRef(s,i), m_matU.coeffRef(s,k)); + + j = mv; + for (int s=0; j!=0; ++s, --j) + std::swap(m_matV.coeffRef(s,i), m_matV.coeffRef(s,k)); + } + } + return *this; +} + +/** \returns the solution of \f$ A x = b \f$ using the current SVD decomposition of A. + * The parts of the solution corresponding to zero singular values are ignored. + * + * \sa MatrixBase::svd(), LU::solve(), LLT::solve() + */ +template<typename MatrixType> +template<typename OtherDerived, typename ResultType> +bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const +{ + ei_assert(b.rows() == m_matU.rows()); + + Scalar maxVal = m_sigma.cwise().abs().maxCoeff(); + for (int j=0; j<b.cols(); ++j) + { + Matrix<Scalar,MatrixUType::RowsAtCompileTime,1> aux = m_matU.transpose() * b.col(j); + + for (int i = 0; i <m_matU.cols(); ++i) + { + Scalar si = m_sigma.coeff(i); + if (ei_isMuchSmallerThan(ei_abs(si),maxVal)) + aux.coeffRef(i) = 0; + else + aux.coeffRef(i) /= si; + } + + result->col(j) = m_matV * aux; + } + return true; +} + +/** Computes the polar decomposition of the matrix, as a product unitary x positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * Only for square matrices. + * + * \sa computePositiveUnitary(), computeRotationScaling() + */ +template<typename MatrixType> +template<typename UnitaryType, typename PositiveType> +void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary, + PositiveType *positive) const +{ + ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices"); + if(unitary) *unitary = m_matU * m_matV.adjoint(); + if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint(); +} + +/** Computes the polar decomposition of the matrix, as a product positive x unitary. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * Only for square matrices. + * + * \sa computeUnitaryPositive(), computeRotationScaling() + */ +template<typename MatrixType> +template<typename UnitaryType, typename PositiveType> +void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive, + PositiveType *unitary) const +{ + ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); + if(unitary) *unitary = m_matU * m_matV.adjoint(); + if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint(); +} + +/** decomposes the matrix as a product rotation x scaling, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * This method requires the Geometry module. + * + * \sa computeScalingRotation(), computeUnitaryPositive() + */ +template<typename MatrixType> +template<typename RotationType, typename ScalingType> +void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const +{ + ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); + Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 + Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma); + sv.coeffRef(0) *= x; + if(scaling) scaling->lazyAssign(m_matV * sv.asDiagonal() * m_matV.adjoint()); + if(rotation) + { + MatrixType m(m_matU); + m.col(0) /= x; + rotation->lazyAssign(m * m_matV.adjoint()); + } +} + +/** decomposes the matrix as a product scaling x rotation, the scaling being + * not necessarily positive. + * + * If either pointer is zero, the corresponding computation is skipped. + * + * This method requires the Geometry module. + * + * \sa computeRotationScaling(), computeUnitaryPositive() + */ +template<typename MatrixType> +template<typename ScalingType, typename RotationType> +void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const +{ + ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices"); + Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1 + Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma); + sv.coeffRef(0) *= x; + if(scaling) scaling->lazyAssign(m_matU * sv.asDiagonal() * m_matU.adjoint()); + if(rotation) + { + MatrixType m(m_matU); + m.col(0) /= x; + rotation->lazyAssign(m * m_matV.adjoint()); + } +} + + +/** \svd_module + * \returns the SVD decomposition of \c *this + */ +template<typename Derived> +inline SVD<typename MatrixBase<Derived>::PlainObject> +MatrixBase<Derived>::svd() const +{ + return SVD<PlainObject>(derived()); +} + +} // end namespace Eigen + +#endif // EIGEN2_SVD_H |