diff options
Diffstat (limited to 'eigen/Eigen/src/Geometry/AlignedBox.h')
-rw-r--r-- | eigen/Eigen/src/Geometry/AlignedBox.h | 392 |
1 files changed, 392 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Geometry/AlignedBox.h b/eigen/Eigen/src/Geometry/AlignedBox.h new file mode 100644 index 0000000..7e1cd9e --- /dev/null +++ b/eigen/Eigen/src/Geometry/AlignedBox.h @@ -0,0 +1,392 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_ALIGNEDBOX_H +#define EIGEN_ALIGNEDBOX_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * + * \class AlignedBox + * + * \brief An axis aligned box + * + * \tparam _Scalar the type of the scalar coefficients + * \tparam _AmbientDim the dimension of the ambient space, can be a compile time value or Dynamic. + * + * This class represents an axis aligned box as a pair of the minimal and maximal corners. + * \warning The result of most methods is undefined when applied to an empty box. You can check for empty boxes using isEmpty(). + * \sa alignedboxtypedefs + */ +template <typename _Scalar, int _AmbientDim> +class AlignedBox +{ +public: +EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim) + enum { AmbientDimAtCompileTime = _AmbientDim }; + typedef _Scalar Scalar; + typedef NumTraits<Scalar> ScalarTraits; + typedef DenseIndex Index; + typedef typename ScalarTraits::Real RealScalar; + typedef typename ScalarTraits::NonInteger NonInteger; + typedef Matrix<Scalar,AmbientDimAtCompileTime,1> VectorType; + + /** Define constants to name the corners of a 1D, 2D or 3D axis aligned bounding box */ + enum CornerType + { + /** 1D names @{ */ + Min=0, Max=1, + /** @} */ + + /** Identifier for 2D corner @{ */ + BottomLeft=0, BottomRight=1, + TopLeft=2, TopRight=3, + /** @} */ + + /** Identifier for 3D corner @{ */ + BottomLeftFloor=0, BottomRightFloor=1, + TopLeftFloor=2, TopRightFloor=3, + BottomLeftCeil=4, BottomRightCeil=5, + TopLeftCeil=6, TopRightCeil=7 + /** @} */ + }; + + + /** Default constructor initializing a null box. */ + inline AlignedBox() + { if (AmbientDimAtCompileTime!=Dynamic) setEmpty(); } + + /** Constructs a null box with \a _dim the dimension of the ambient space. */ + inline explicit AlignedBox(Index _dim) : m_min(_dim), m_max(_dim) + { setEmpty(); } + + /** Constructs a box with extremities \a _min and \a _max. + * \warning If either component of \a _min is larger than the same component of \a _max, the constructed box is empty. */ + template<typename OtherVectorType1, typename OtherVectorType2> + inline AlignedBox(const OtherVectorType1& _min, const OtherVectorType2& _max) : m_min(_min), m_max(_max) {} + + /** Constructs a box containing a single point \a p. */ + template<typename Derived> + inline explicit AlignedBox(const MatrixBase<Derived>& p) : m_min(p), m_max(m_min) + { } + + ~AlignedBox() {} + + /** \returns the dimension in which the box holds */ + inline Index dim() const { return AmbientDimAtCompileTime==Dynamic ? m_min.size() : Index(AmbientDimAtCompileTime); } + + /** \deprecated use isEmpty() */ + inline bool isNull() const { return isEmpty(); } + + /** \deprecated use setEmpty() */ + inline void setNull() { setEmpty(); } + + /** \returns true if the box is empty. + * \sa setEmpty */ + inline bool isEmpty() const { return (m_min.array() > m_max.array()).any(); } + + /** Makes \c *this an empty box. + * \sa isEmpty */ + inline void setEmpty() + { + m_min.setConstant( ScalarTraits::highest() ); + m_max.setConstant( ScalarTraits::lowest() ); + } + + /** \returns the minimal corner */ + inline const VectorType& (min)() const { return m_min; } + /** \returns a non const reference to the minimal corner */ + inline VectorType& (min)() { return m_min; } + /** \returns the maximal corner */ + inline const VectorType& (max)() const { return m_max; } + /** \returns a non const reference to the maximal corner */ + inline VectorType& (max)() { return m_max; } + + /** \returns the center of the box */ + inline const CwiseUnaryOp<internal::scalar_quotient1_op<Scalar>, + const CwiseBinaryOp<internal::scalar_sum_op<Scalar>, const VectorType, const VectorType> > + center() const + { return (m_min+m_max)/2; } + + /** \returns the lengths of the sides of the bounding box. + * Note that this function does not get the same + * result for integral or floating scalar types: see + */ + inline const CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> sizes() const + { return m_max - m_min; } + + /** \returns the volume of the bounding box */ + inline Scalar volume() const + { return sizes().prod(); } + + /** \returns an expression for the bounding box diagonal vector + * if the length of the diagonal is needed: diagonal().norm() + * will provide it. + */ + inline CwiseBinaryOp< internal::scalar_difference_op<Scalar>, const VectorType, const VectorType> diagonal() const + { return sizes(); } + + /** \returns the vertex of the bounding box at the corner defined by + * the corner-id corner. It works only for a 1D, 2D or 3D bounding box. + * For 1D bounding boxes corners are named by 2 enum constants: + * BottomLeft and BottomRight. + * For 2D bounding boxes, corners are named by 4 enum constants: + * BottomLeft, BottomRight, TopLeft, TopRight. + * For 3D bounding boxes, the following names are added: + * BottomLeftCeil, BottomRightCeil, TopLeftCeil, TopRightCeil. + */ + inline VectorType corner(CornerType corner) const + { + EIGEN_STATIC_ASSERT(_AmbientDim <= 3, THIS_METHOD_IS_ONLY_FOR_VECTORS_OF_A_SPECIFIC_SIZE); + + VectorType res; + + Index mult = 1; + for(Index d=0; d<dim(); ++d) + { + if( mult & corner ) res[d] = m_max[d]; + else res[d] = m_min[d]; + mult *= 2; + } + return res; + } + + /** \returns a random point inside the bounding box sampled with + * a uniform distribution */ + inline VectorType sample() const + { + VectorType r(dim()); + for(Index d=0; d<dim(); ++d) + { + if(!ScalarTraits::IsInteger) + { + r[d] = m_min[d] + (m_max[d]-m_min[d]) + * internal::random<Scalar>(Scalar(0), Scalar(1)); + } + else + r[d] = internal::random(m_min[d], m_max[d]); + } + return r; + } + + /** \returns true if the point \a p is inside the box \c *this. */ + template<typename Derived> + inline bool contains(const MatrixBase<Derived>& p) const + { + typename internal::nested<Derived,2>::type p_n(p.derived()); + return (m_min.array()<=p_n.array()).all() && (p_n.array()<=m_max.array()).all(); + } + + /** \returns true if the box \a b is entirely inside the box \c *this. */ + inline bool contains(const AlignedBox& b) const + { return (m_min.array()<=(b.min)().array()).all() && ((b.max)().array()<=m_max.array()).all(); } + + /** \returns true if the box \a b is intersecting the box \c *this. + * \sa intersection, clamp */ + inline bool intersects(const AlignedBox& b) const + { return (m_min.array()<=(b.max)().array()).all() && ((b.min)().array()<=m_max.array()).all(); } + + /** Extends \c *this such that it contains the point \a p and returns a reference to \c *this. + * \sa extend(const AlignedBox&) */ + template<typename Derived> + inline AlignedBox& extend(const MatrixBase<Derived>& p) + { + typename internal::nested<Derived,2>::type p_n(p.derived()); + m_min = m_min.cwiseMin(p_n); + m_max = m_max.cwiseMax(p_n); + return *this; + } + + /** Extends \c *this such that it contains the box \a b and returns a reference to \c *this. + * \sa merged, extend(const MatrixBase&) */ + inline AlignedBox& extend(const AlignedBox& b) + { + m_min = m_min.cwiseMin(b.m_min); + m_max = m_max.cwiseMax(b.m_max); + return *this; + } + + /** Clamps \c *this by the box \a b and returns a reference to \c *this. + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersection(), intersects() */ + inline AlignedBox& clamp(const AlignedBox& b) + { + m_min = m_min.cwiseMax(b.m_min); + m_max = m_max.cwiseMin(b.m_max); + return *this; + } + + /** Returns an AlignedBox that is the intersection of \a b and \c *this + * \note If the boxes don't intersect, the resulting box is empty. + * \sa intersects(), clamp, contains() */ + inline AlignedBox intersection(const AlignedBox& b) const + {return AlignedBox(m_min.cwiseMax(b.m_min), m_max.cwiseMin(b.m_max)); } + + /** Returns an AlignedBox that is the union of \a b and \c *this. + * \note Merging with an empty box may result in a box bigger than \c *this. + * \sa extend(const AlignedBox&) */ + inline AlignedBox merged(const AlignedBox& b) const + { return AlignedBox(m_min.cwiseMin(b.m_min), m_max.cwiseMax(b.m_max)); } + + /** Translate \c *this by the vector \a t and returns a reference to \c *this. */ + template<typename Derived> + inline AlignedBox& translate(const MatrixBase<Derived>& a_t) + { + const typename internal::nested<Derived,2>::type t(a_t.derived()); + m_min += t; + m_max += t; + return *this; + } + + /** \returns the squared distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa exteriorDistance(const MatrixBase&), squaredExteriorDistance(const AlignedBox&) + */ + template<typename Derived> + inline Scalar squaredExteriorDistance(const MatrixBase<Derived>& p) const; + + /** \returns the squared distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa exteriorDistance(const AlignedBox&), squaredExteriorDistance(const MatrixBase&) + */ + inline Scalar squaredExteriorDistance(const AlignedBox& b) const; + + /** \returns the distance between the point \a p and the box \c *this, + * and zero if \a p is inside the box. + * \sa squaredExteriorDistance(const MatrixBase&), exteriorDistance(const AlignedBox&) + */ + template<typename Derived> + inline NonInteger exteriorDistance(const MatrixBase<Derived>& p) const + { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(p))); } + + /** \returns the distance between the boxes \a b and \c *this, + * and zero if the boxes intersect. + * \sa squaredExteriorDistance(const AlignedBox&), exteriorDistance(const MatrixBase&) + */ + inline NonInteger exteriorDistance(const AlignedBox& b) const + { using std::sqrt; return sqrt(NonInteger(squaredExteriorDistance(b))); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<AlignedBox, + AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type cast() const + { + return typename internal::cast_return_type<AlignedBox, + AlignedBox<NewScalarType,AmbientDimAtCompileTime> >::type(*this); + } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit AlignedBox(const AlignedBox<OtherScalarType,AmbientDimAtCompileTime>& other) + { + m_min = (other.min)().template cast<Scalar>(); + m_max = (other.max)().template cast<Scalar>(); + } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const AlignedBox& other, const RealScalar& prec = ScalarTraits::dummy_precision()) const + { return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); } + +protected: + + VectorType m_min, m_max; +}; + + + +template<typename Scalar,int AmbientDim> +template<typename Derived> +inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const MatrixBase<Derived>& a_p) const +{ + typename internal::nested<Derived,2*AmbientDim>::type p(a_p.derived()); + Scalar dist2(0); + Scalar aux; + for (Index k=0; k<dim(); ++k) + { + if( m_min[k] > p[k] ) + { + aux = m_min[k] - p[k]; + dist2 += aux*aux; + } + else if( p[k] > m_max[k] ) + { + aux = p[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +template<typename Scalar,int AmbientDim> +inline Scalar AlignedBox<Scalar,AmbientDim>::squaredExteriorDistance(const AlignedBox& b) const +{ + Scalar dist2(0); + Scalar aux; + for (Index k=0; k<dim(); ++k) + { + if( m_min[k] > b.m_max[k] ) + { + aux = m_min[k] - b.m_max[k]; + dist2 += aux*aux; + } + else if( b.m_min[k] > m_max[k] ) + { + aux = b.m_min[k] - m_max[k]; + dist2 += aux*aux; + } + } + return dist2; +} + +/** \defgroup alignedboxtypedefs Global aligned box typedefs + * + * \ingroup Geometry_Module + * + * Eigen defines several typedef shortcuts for most common aligned box types. + * + * The general patterns are the following: + * + * \c AlignedBoxSizeType where \c Size can be \c 1, \c 2,\c 3,\c 4 for fixed size boxes or \c X for dynamic size, + * and where \c Type can be \c i for integer, \c f for float, \c d for double. + * + * For example, \c AlignedBox3d is a fixed-size 3x3 aligned box type of doubles, and \c AlignedBoxXf is a dynamic-size aligned box of floats. + * + * \sa class AlignedBox + */ + +#define EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Size, SizeSuffix) \ +/** \ingroup alignedboxtypedefs */ \ +typedef AlignedBox<Type, Size> AlignedBox##SizeSuffix##TypeSuffix; + +#define EIGEN_MAKE_TYPEDEFS_ALL_SIZES(Type, TypeSuffix) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 1, 1) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 2, 2) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 3, 3) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, 4, 4) \ +EIGEN_MAKE_TYPEDEFS(Type, TypeSuffix, Dynamic, X) + +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(int, i) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(float, f) +EIGEN_MAKE_TYPEDEFS_ALL_SIZES(double, d) + +#undef EIGEN_MAKE_TYPEDEFS_ALL_SIZES +#undef EIGEN_MAKE_TYPEDEFS + +} // end namespace Eigen + +#endif // EIGEN_ALIGNEDBOX_H |