diff options
Diffstat (limited to 'eigen/Eigen/src/Geometry/Translation.h')
-rw-r--r-- | eigen/Eigen/src/Geometry/Translation.h | 206 |
1 files changed, 206 insertions, 0 deletions
diff --git a/eigen/Eigen/src/Geometry/Translation.h b/eigen/Eigen/src/Geometry/Translation.h new file mode 100644 index 0000000..2e77986 --- /dev/null +++ b/eigen/Eigen/src/Geometry/Translation.h @@ -0,0 +1,206 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_TRANSLATION_H +#define EIGEN_TRANSLATION_H + +namespace Eigen { + +/** \geometry_module \ingroup Geometry_Module + * + * \class Translation + * + * \brief Represents a translation transformation + * + * \param _Scalar the scalar type, i.e., the type of the coefficients. + * \param _Dim the dimension of the space, can be a compile time value or Dynamic + * + * \note This class is not aimed to be used to store a translation transformation, + * but rather to make easier the constructions and updates of Transform objects. + * + * \sa class Scaling, class Transform + */ +template<typename _Scalar, int _Dim> +class Translation +{ +public: + EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_Dim) + /** dimension of the space */ + enum { Dim = _Dim }; + /** the scalar type of the coefficients */ + typedef _Scalar Scalar; + /** corresponding vector type */ + typedef Matrix<Scalar,Dim,1> VectorType; + /** corresponding linear transformation matrix type */ + typedef Matrix<Scalar,Dim,Dim> LinearMatrixType; + /** corresponding affine transformation type */ + typedef Transform<Scalar,Dim,Affine> AffineTransformType; + /** corresponding isometric transformation type */ + typedef Transform<Scalar,Dim,Isometry> IsometryTransformType; + +protected: + + VectorType m_coeffs; + +public: + + /** Default constructor without initialization. */ + Translation() {} + /** */ + inline Translation(const Scalar& sx, const Scalar& sy) + { + eigen_assert(Dim==2); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + } + /** */ + inline Translation(const Scalar& sx, const Scalar& sy, const Scalar& sz) + { + eigen_assert(Dim==3); + m_coeffs.x() = sx; + m_coeffs.y() = sy; + m_coeffs.z() = sz; + } + /** Constructs and initialize the translation transformation from a vector of translation coefficients */ + explicit inline Translation(const VectorType& vector) : m_coeffs(vector) {} + + /** \brief Retruns the x-translation by value. **/ + inline Scalar x() const { return m_coeffs.x(); } + /** \brief Retruns the y-translation by value. **/ + inline Scalar y() const { return m_coeffs.y(); } + /** \brief Retruns the z-translation by value. **/ + inline Scalar z() const { return m_coeffs.z(); } + + /** \brief Retruns the x-translation as a reference. **/ + inline Scalar& x() { return m_coeffs.x(); } + /** \brief Retruns the y-translation as a reference. **/ + inline Scalar& y() { return m_coeffs.y(); } + /** \brief Retruns the z-translation as a reference. **/ + inline Scalar& z() { return m_coeffs.z(); } + + const VectorType& vector() const { return m_coeffs; } + VectorType& vector() { return m_coeffs; } + + const VectorType& translation() const { return m_coeffs; } + VectorType& translation() { return m_coeffs; } + + /** Concatenates two translation */ + inline Translation operator* (const Translation& other) const + { return Translation(m_coeffs + other.m_coeffs); } + + /** Concatenates a translation and a uniform scaling */ + inline AffineTransformType operator* (const UniformScaling<Scalar>& other) const; + + /** Concatenates a translation and a linear transformation */ + template<typename OtherDerived> + inline AffineTransformType operator* (const EigenBase<OtherDerived>& linear) const; + + /** Concatenates a translation and a rotation */ + template<typename Derived> + inline IsometryTransformType operator*(const RotationBase<Derived,Dim>& r) const + { return *this * IsometryTransformType(r); } + + /** \returns the concatenation of a linear transformation \a l with the translation \a t */ + // its a nightmare to define a templated friend function outside its declaration + template<typename OtherDerived> friend + inline AffineTransformType operator*(const EigenBase<OtherDerived>& linear, const Translation& t) + { + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = linear.derived() * t.m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; + } + + /** Concatenates a translation and a transformation */ + template<int Mode, int Options> + inline Transform<Scalar,Dim,Mode> operator* (const Transform<Scalar,Dim,Mode,Options>& t) const + { + Transform<Scalar,Dim,Mode> res = t; + res.pretranslate(m_coeffs); + return res; + } + + /** Applies translation to vector */ + inline VectorType operator* (const VectorType& other) const + { return m_coeffs + other; } + + /** \returns the inverse translation (opposite) */ + Translation inverse() const { return Translation(-m_coeffs); } + + Translation& operator=(const Translation& other) + { + m_coeffs = other.m_coeffs; + return *this; + } + + static const Translation Identity() { return Translation(VectorType::Zero()); } + + /** \returns \c *this with scalar type casted to \a NewScalarType + * + * Note that if \a NewScalarType is equal to the current scalar type of \c *this + * then this function smartly returns a const reference to \c *this. + */ + template<typename NewScalarType> + inline typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type cast() const + { return typename internal::cast_return_type<Translation,Translation<NewScalarType,Dim> >::type(*this); } + + /** Copy constructor with scalar type conversion */ + template<typename OtherScalarType> + inline explicit Translation(const Translation<OtherScalarType,Dim>& other) + { m_coeffs = other.vector().template cast<Scalar>(); } + + /** \returns \c true if \c *this is approximately equal to \a other, within the precision + * determined by \a prec. + * + * \sa MatrixBase::isApprox() */ + bool isApprox(const Translation& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const + { return m_coeffs.isApprox(other.m_coeffs, prec); } + +}; + +/** \addtogroup Geometry_Module */ +//@{ +typedef Translation<float, 2> Translation2f; +typedef Translation<double,2> Translation2d; +typedef Translation<float, 3> Translation3f; +typedef Translation<double,3> Translation3d; +//@} + +template<typename Scalar, int Dim> +inline typename Translation<Scalar,Dim>::AffineTransformType +Translation<Scalar,Dim>::operator* (const UniformScaling<Scalar>& other) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear().diagonal().fill(other.factor()); + res.translation() = m_coeffs; + res(Dim,Dim) = Scalar(1); + return res; +} + +template<typename Scalar, int Dim> +template<typename OtherDerived> +inline typename Translation<Scalar,Dim>::AffineTransformType +Translation<Scalar,Dim>::operator* (const EigenBase<OtherDerived>& linear) const +{ + AffineTransformType res; + res.matrix().setZero(); + res.linear() = linear.derived(); + res.translation() = m_coeffs; + res.matrix().row(Dim).setZero(); + res(Dim,Dim) = Scalar(1); + return res; +} + +} // end namespace Eigen + +#endif // EIGEN_TRANSLATION_H |