diff options
Diffstat (limited to 'eigen/Eigen/src/MetisSupport/MetisSupport.h')
-rw-r--r-- | eigen/Eigen/src/MetisSupport/MetisSupport.h | 137 |
1 files changed, 137 insertions, 0 deletions
diff --git a/eigen/Eigen/src/MetisSupport/MetisSupport.h b/eigen/Eigen/src/MetisSupport/MetisSupport.h new file mode 100644 index 0000000..f2bbef2 --- /dev/null +++ b/eigen/Eigen/src/MetisSupport/MetisSupport.h @@ -0,0 +1,137 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. +#ifndef METIS_SUPPORT_H +#define METIS_SUPPORT_H + +namespace Eigen { +/** + * Get the fill-reducing ordering from the METIS package + * + * If A is the original matrix and Ap is the permuted matrix, + * the fill-reducing permutation is defined as follows : + * Row (column) i of A is the matperm(i) row (column) of Ap. + * WARNING: As computed by METIS, this corresponds to the vector iperm (instead of perm) + */ +template <typename Index> +class MetisOrdering +{ +public: + typedef PermutationMatrix<Dynamic,Dynamic,Index> PermutationType; + typedef Matrix<Index,Dynamic,1> IndexVector; + + template <typename MatrixType> + void get_symmetrized_graph(const MatrixType& A) + { + Index m = A.cols(); + eigen_assert((A.rows() == A.cols()) && "ONLY FOR SQUARED MATRICES"); + // Get the transpose of the input matrix + MatrixType At = A.transpose(); + // Get the number of nonzeros elements in each row/col of At+A + Index TotNz = 0; + IndexVector visited(m); + visited.setConstant(-1); + for (int j = 0; j < m; j++) + { + // Compute the union structure of of A(j,:) and At(j,:) + visited(j) = j; // Do not include the diagonal element + // Get the nonzeros in row/column j of A + for (typename MatrixType::InnerIterator it(A, j); it; ++it) + { + Index idx = it.index(); // Get the row index (for column major) or column index (for row major) + if (visited(idx) != j ) + { + visited(idx) = j; + ++TotNz; + } + } + //Get the nonzeros in row/column j of At + for (typename MatrixType::InnerIterator it(At, j); it; ++it) + { + Index idx = it.index(); + if(visited(idx) != j) + { + visited(idx) = j; + ++TotNz; + } + } + } + // Reserve place for A + At + m_indexPtr.resize(m+1); + m_innerIndices.resize(TotNz); + + // Now compute the real adjacency list of each column/row + visited.setConstant(-1); + Index CurNz = 0; + for (int j = 0; j < m; j++) + { + m_indexPtr(j) = CurNz; + + visited(j) = j; // Do not include the diagonal element + // Add the pattern of row/column j of A to A+At + for (typename MatrixType::InnerIterator it(A,j); it; ++it) + { + Index idx = it.index(); // Get the row index (for column major) or column index (for row major) + if (visited(idx) != j ) + { + visited(idx) = j; + m_innerIndices(CurNz) = idx; + CurNz++; + } + } + //Add the pattern of row/column j of At to A+At + for (typename MatrixType::InnerIterator it(At, j); it; ++it) + { + Index idx = it.index(); + if(visited(idx) != j) + { + visited(idx) = j; + m_innerIndices(CurNz) = idx; + ++CurNz; + } + } + } + m_indexPtr(m) = CurNz; + } + + template <typename MatrixType> + void operator() (const MatrixType& A, PermutationType& matperm) + { + Index m = A.cols(); + IndexVector perm(m),iperm(m); + // First, symmetrize the matrix graph. + get_symmetrized_graph(A); + int output_error; + + // Call the fill-reducing routine from METIS + output_error = METIS_NodeND(&m, m_indexPtr.data(), m_innerIndices.data(), NULL, NULL, perm.data(), iperm.data()); + + if(output_error != METIS_OK) + { + //FIXME The ordering interface should define a class of possible errors + std::cerr << "ERROR WHILE CALLING THE METIS PACKAGE \n"; + return; + } + + // Get the fill-reducing permutation + //NOTE: If Ap is the permuted matrix then perm and iperm vectors are defined as follows + // Row (column) i of Ap is the perm(i) row(column) of A, and row (column) i of A is the iperm(i) row(column) of Ap + + matperm.resize(m); + for (int j = 0; j < m; j++) + matperm.indices()(iperm(j)) = j; + + } + + protected: + IndexVector m_indexPtr; // Pointer to the adjacenccy list of each row/column + IndexVector m_innerIndices; // Adjacency list +}; + +}// end namespace eigen +#endif |