summaryrefslogtreecommitdiffhomepage
path: root/eigen/Eigen/src/QR
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/Eigen/src/QR')
-rw-r--r--eigen/Eigen/src/QR/ColPivHouseholderQR.h653
-rw-r--r--eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h97
-rw-r--r--eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h562
-rw-r--r--eigen/Eigen/src/QR/FullPivHouseholderQR.h676
-rw-r--r--eigen/Eigen/src/QR/HouseholderQR.h409
-rw-r--r--eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h68
6 files changed, 0 insertions, 2465 deletions
diff --git a/eigen/Eigen/src/QR/ColPivHouseholderQR.h b/eigen/Eigen/src/QR/ColPivHouseholderQR.h
deleted file mode 100644
index a7b47d5..0000000
--- a/eigen/Eigen/src/QR/ColPivHouseholderQR.h
+++ /dev/null
@@ -1,653 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-namespace internal {
-template<typename _MatrixType> struct traits<ColPivHouseholderQR<_MatrixType> >
- : traits<_MatrixType>
-{
- enum { Flags = 0 };
-};
-
-} // end namespace internal
-
-/** \ingroup QR_Module
- *
- * \class ColPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with column-pivoting
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix, \b Q a unitary matrix and \b R an
- * upper triangular matrix.
- *
- * This decomposition performs column pivoting in order to be rank-revealing and improve
- * numerical stability. It is slower than HouseholderQR, and faster than FullPivHouseholderQR.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::colPivHouseholderQr()
- */
-template<typename _MatrixType> class ColPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- // FIXME should be int
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type RealRowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- private:
-
- typedef typename PermutationType::StorageIndex PermIndexType;
-
- public:
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via ColPivHouseholderQR::compute(const MatrixType&).
- */
- ColPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_colsPermutation(),
- m_colsTranspositions(),
- m_temp(),
- m_colNormsUpdated(),
- m_colNormsDirect(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa ColPivHouseholderQR()
- */
- ColPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_colsPermutation(PermIndexType(cols)),
- m_colsTranspositions(cols),
- m_temp(cols),
- m_colNormsUpdated(cols),
- m_colNormsDirect(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * ColPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit ColPivHouseholderQR(const EigenBase<InputType>& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colNormsUpdated(matrix.cols()),
- m_colNormsDirect(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix.derived());
- }
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
- *
- * \sa ColPivHouseholderQR(const EigenBase&)
- */
- template<typename InputType>
- explicit ColPivHouseholderQR(EigenBase<InputType>& matrix)
- : m_qr(matrix.derived()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_colsPermutation(PermIndexType(matrix.cols())),
- m_colsTranspositions(matrix.cols()),
- m_temp(matrix.cols()),
- m_colNormsUpdated(matrix.cols()),
- m_colNormsDirect(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- computeInPlace();
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include ColPivHouseholderQR_solve.cpp
- * Output: \verbinclude ColPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const Solve<ColPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return Solve<ColPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ() const;
- HouseholderSequenceType matrixQ() const
- {
- return householderQ();
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- /** \returns a reference to the matrix where the result Householder QR is stored
- * \warning The strict lower part of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixR().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixR() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- template<typename InputType>
- ColPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_colsPermutation;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const Inverse<ColPivHouseholderQR> inverse() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return Inverse<ColPivHouseholderQR>(*this);
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- ColPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- ColPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- /** \brief Reports whether the QR factorization was succesful.
- *
- * \note This function always returns \c Success. It is provided for compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const
- {
- eigen_assert(m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
- #endif
-
- protected:
-
- friend class CompleteOrthogonalDecomposition<MatrixType>;
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- PermutationType m_colsPermutation;
- IntRowVectorType m_colsTranspositions;
- RowVectorType m_temp;
- RealRowVectorType m_colNormsUpdated;
- RealRowVectorType m_colNormsDirect;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar ColPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class ColPivHouseholderQR, ColPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-template<typename InputType>
-ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
-{
- m_qr = matrix.derived();
- computeInPlace();
- return *this;
-}
-
-template<typename MatrixType>
-void ColPivHouseholderQR<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(m_qr.cols()<=NumTraits<int>::highest());
-
- using std::abs;
-
- Index rows = m_qr.rows();
- Index cols = m_qr.cols();
- Index size = m_qr.diagonalSize();
-
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_colsTranspositions.resize(m_qr.cols());
- Index number_of_transpositions = 0;
-
- m_colNormsUpdated.resize(cols);
- m_colNormsDirect.resize(cols);
- for (Index k = 0; k < cols; ++k) {
- // colNormsDirect(k) caches the most recent directly computed norm of
- // column k.
- m_colNormsDirect.coeffRef(k) = m_qr.col(k).norm();
- m_colNormsUpdated.coeffRef(k) = m_colNormsDirect.coeffRef(k);
- }
-
- RealScalar threshold_helper = numext::abs2<RealScalar>(m_colNormsUpdated.maxCoeff() * NumTraits<RealScalar>::epsilon()) / RealScalar(rows);
- RealScalar norm_downdate_threshold = numext::sqrt(NumTraits<RealScalar>::epsilon());
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for(Index k = 0; k < size; ++k)
- {
- // first, we look up in our table m_colNormsUpdated which column has the biggest norm
- Index biggest_col_index;
- RealScalar biggest_col_sq_norm = numext::abs2(m_colNormsUpdated.tail(cols-k).maxCoeff(&biggest_col_index));
- biggest_col_index += k;
-
- // Track the number of meaningful pivots but do not stop the decomposition to make
- // sure that the initial matrix is properly reproduced. See bug 941.
- if(m_nonzero_pivots==size && biggest_col_sq_norm < threshold_helper * RealScalar(rows-k))
- m_nonzero_pivots = k;
-
- // apply the transposition to the columns
- m_colsTranspositions.coeffRef(k) = biggest_col_index;
- if(k != biggest_col_index) {
- m_qr.col(k).swap(m_qr.col(biggest_col_index));
- std::swap(m_colNormsUpdated.coeffRef(k), m_colNormsUpdated.coeffRef(biggest_col_index));
- std::swap(m_colNormsDirect.coeffRef(k), m_colNormsDirect.coeffRef(biggest_col_index));
- ++number_of_transpositions;
- }
-
- // generate the householder vector, store it below the diagonal
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
-
- // apply the householder transformation to the diagonal coefficient
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- // apply the householder transformation
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
-
- // update our table of norms of the columns
- for (Index j = k + 1; j < cols; ++j) {
- // The following implements the stable norm downgrade step discussed in
- // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
- // and used in LAPACK routines xGEQPF and xGEQP3.
- // See lines 278-297 in http://www.netlib.org/lapack/explore-html/dc/df4/sgeqpf_8f_source.html
- if (m_colNormsUpdated.coeffRef(j) != RealScalar(0)) {
- RealScalar temp = abs(m_qr.coeffRef(k, j)) / m_colNormsUpdated.coeffRef(j);
- temp = (RealScalar(1) + temp) * (RealScalar(1) - temp);
- temp = temp < RealScalar(0) ? RealScalar(0) : temp;
- RealScalar temp2 = temp * numext::abs2<RealScalar>(m_colNormsUpdated.coeffRef(j) /
- m_colNormsDirect.coeffRef(j));
- if (temp2 <= norm_downdate_threshold) {
- // The updated norm has become too inaccurate so re-compute the column
- // norm directly.
- m_colNormsDirect.coeffRef(j) = m_qr.col(j).tail(rows - k - 1).norm();
- m_colNormsUpdated.coeffRef(j) = m_colNormsDirect.coeffRef(j);
- } else {
- m_colNormsUpdated.coeffRef(j) *= numext::sqrt(temp);
- }
- }
- }
- }
-
- m_colsPermutation.setIdentity(PermIndexType(cols));
- for(PermIndexType k = 0; k < size/*m_nonzero_pivots*/; ++k)
- m_colsPermutation.applyTranspositionOnTheRight(k, PermIndexType(m_colsTranspositions.coeff(k)));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-}
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename _MatrixType>
-template<typename RhsType, typename DstType>
-void ColPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
-{
- eigen_assert(rhs.rows() == rows());
-
- const Index nonzero_pivots = nonzeroPivots();
-
- if(nonzero_pivots == 0)
- {
- dst.setZero();
- return;
- }
-
- typename RhsType::PlainObject c(rhs);
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(m_qr, m_hCoeffs)
- .setLength(nonzero_pivots)
- .transpose()
- );
-
- m_qr.topLeftCorner(nonzero_pivots, nonzero_pivots)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(nonzero_pivots));
-
- for(Index i = 0; i < nonzero_pivots; ++i) dst.row(m_colsPermutation.indices().coeff(i)) = c.row(i);
- for(Index i = nonzero_pivots; i < cols(); ++i) dst.row(m_colsPermutation.indices().coeff(i)).setZero();
-}
-#endif
-
-namespace internal {
-
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<ColPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename ColPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef ColPivHouseholderQR<MatrixType> QrType;
- typedef Inverse<QrType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations.
- * You can extract the meaningful part only by using:
- * \code qr.householderQ().setLength(qr.nonzeroPivots()) \endcode*/
-template<typename MatrixType>
-typename ColPivHouseholderQR<MatrixType>::HouseholderSequenceType ColPivHouseholderQR<MatrixType>
- ::householderQ() const
-{
- eigen_assert(m_isInitialized && "ColPivHouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
-}
-
-/** \return the column-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class ColPivHouseholderQR
- */
-template<typename Derived>
-const ColPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::colPivHouseholderQr() const
-{
- return ColPivHouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_H
diff --git a/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h b/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h
deleted file mode 100644
index 4e9651f..0000000
--- a/eigen/Eigen/src/QR/ColPivHouseholderQR_LAPACKE.h
+++ /dev/null
@@ -1,97 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to LAPACKe
- * Householder QR decomposition of a matrix with column pivoting based on
- * LAPACKE_?geqp3 function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
-#define EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
-
-namespace Eigen {
-
-/** \internal Specialization for the data types supported by LAPACKe */
-
-#define EIGEN_LAPACKE_QR_COLPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX, EIGCOLROW, LAPACKE_COLROW) \
-template<> template<typename InputType> inline \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >& \
-ColPivHouseholderQR<Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> >::compute( \
- const EigenBase<InputType>& matrix) \
-\
-{ \
- using std::abs; \
- typedef Matrix<EIGTYPE, Dynamic, Dynamic, EIGCOLROW, Dynamic, Dynamic> MatrixType; \
- typedef MatrixType::RealScalar RealScalar; \
- Index rows = matrix.rows();\
- Index cols = matrix.cols();\
-\
- m_qr = matrix;\
- Index size = m_qr.diagonalSize();\
- m_hCoeffs.resize(size);\
-\
- m_colsTranspositions.resize(cols);\
- /*Index number_of_transpositions = 0;*/ \
-\
- m_nonzero_pivots = 0; \
- m_maxpivot = RealScalar(0);\
- m_colsPermutation.resize(cols); \
- m_colsPermutation.indices().setZero(); \
-\
- lapack_int lda = internal::convert_index<lapack_int,Index>(m_qr.outerStride()); \
- lapack_int matrix_order = LAPACKE_COLROW; \
- LAPACKE_##LAPACKE_PREFIX##geqp3( matrix_order, internal::convert_index<lapack_int,Index>(rows), internal::convert_index<lapack_int,Index>(cols), \
- (LAPACKE_TYPE*)m_qr.data(), lda, (lapack_int*)m_colsPermutation.indices().data(), (LAPACKE_TYPE*)m_hCoeffs.data()); \
- m_isInitialized = true; \
- m_maxpivot=m_qr.diagonal().cwiseAbs().maxCoeff(); \
- m_hCoeffs.adjointInPlace(); \
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold(); \
- lapack_int *perm = m_colsPermutation.indices().data(); \
- for(Index i=0;i<size;i++) { \
- m_nonzero_pivots += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);\
- } \
- for(Index i=0;i<cols;i++) perm[i]--;\
-\
- /*m_det_pq = (number_of_transpositions%2) ? -1 : 1; // TODO: It's not needed now; fix upon availability in Eigen */ \
-\
- return *this; \
-}
-
-EIGEN_LAPACKE_QR_COLPIV(double, double, d, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(float, float, s, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, ColMajor, LAPACK_COL_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, ColMajor, LAPACK_COL_MAJOR)
-
-EIGEN_LAPACKE_QR_COLPIV(double, double, d, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(float, float, s, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(dcomplex, lapack_complex_double, z, RowMajor, LAPACK_ROW_MAJOR)
-EIGEN_LAPACKE_QR_COLPIV(scomplex, lapack_complex_float, c, RowMajor, LAPACK_ROW_MAJOR)
-
-} // end namespace Eigen
-
-#endif // EIGEN_COLPIVOTINGHOUSEHOLDERQR_LAPACKE_H
diff --git a/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h b/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h
deleted file mode 100644
index 34c637b..0000000
--- a/eigen/Eigen/src/QR/CompleteOrthogonalDecomposition.h
+++ /dev/null
@@ -1,562 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2016 Rasmus Munk Larsen <rmlarsen@google.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
-#define EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
-
-namespace Eigen {
-
-namespace internal {
-template <typename _MatrixType>
-struct traits<CompleteOrthogonalDecomposition<_MatrixType> >
- : traits<_MatrixType> {
- enum { Flags = 0 };
-};
-
-} // end namespace internal
-
-/** \ingroup QR_Module
- *
- * \class CompleteOrthogonalDecomposition
- *
- * \brief Complete orthogonal decomposition (COD) of a matrix.
- *
- * \param MatrixType the type of the matrix of which we are computing the COD.
- *
- * This class performs a rank-revealing complete orthogonal decomposition of a
- * matrix \b A into matrices \b P, \b Q, \b T, and \b Z such that
- * \f[
- * \mathbf{A} \, \mathbf{P} = \mathbf{Q} \,
- * \begin{bmatrix} \mathbf{T} & \mathbf{0} \\
- * \mathbf{0} & \mathbf{0} \end{bmatrix} \, \mathbf{Z}
- * \f]
- * by using Householder transformations. Here, \b P is a permutation matrix,
- * \b Q and \b Z are unitary matrices and \b T an upper triangular matrix of
- * size rank-by-rank. \b A may be rank deficient.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::completeOrthogonalDecomposition()
- */
-template <typename _MatrixType>
-class CompleteOrthogonalDecomposition {
- public:
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime>
- PermutationType;
- typedef typename internal::plain_row_type<MatrixType, Index>::type
- IntRowVectorType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_row_type<MatrixType, RealScalar>::type
- RealRowVectorType;
- typedef HouseholderSequence<
- MatrixType, typename internal::remove_all<
- typename HCoeffsType::ConjugateReturnType>::type>
- HouseholderSequenceType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- private:
- typedef typename PermutationType::Index PermIndexType;
-
- public:
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via
- * \c CompleteOrthogonalDecomposition::compute(const* MatrixType&).
- */
- CompleteOrthogonalDecomposition() : m_cpqr(), m_zCoeffs(), m_temp() {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa CompleteOrthogonalDecomposition()
- */
- CompleteOrthogonalDecomposition(Index rows, Index cols)
- : m_cpqr(rows, cols), m_zCoeffs((std::min)(rows, cols)), m_temp(cols) {}
-
- /** \brief Constructs a complete orthogonal decomposition from a given
- * matrix.
- *
- * This constructor computes the complete orthogonal decomposition of the
- * matrix \a matrix by calling the method compute(). The default
- * threshold for rank determination will be used. It is a short cut for:
- *
- * \code
- * CompleteOrthogonalDecomposition<MatrixType> cod(matrix.rows(),
- * matrix.cols());
- * cod.setThreshold(Default);
- * cod.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template <typename InputType>
- explicit CompleteOrthogonalDecomposition(const EigenBase<InputType>& matrix)
- : m_cpqr(matrix.rows(), matrix.cols()),
- m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_temp(matrix.cols())
- {
- compute(matrix.derived());
- }
-
- /** \brief Constructs a complete orthogonal decomposition from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
- *
- * \sa CompleteOrthogonalDecomposition(const EigenBase&)
- */
- template<typename InputType>
- explicit CompleteOrthogonalDecomposition(EigenBase<InputType>& matrix)
- : m_cpqr(matrix.derived()),
- m_zCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_temp(matrix.cols())
- {
- computeInPlace();
- }
-
-
- /** This method computes the minimum-norm solution X to a least squares
- * problem \f[\mathrm{minimize} \|A X - B\|, \f] where \b A is the matrix of
- * which \c *this is the complete orthogonal decomposition.
- *
- * \param b the right-hand sides of the problem to solve.
- *
- * \returns a solution.
- *
- */
- template <typename Rhs>
- inline const Solve<CompleteOrthogonalDecomposition, Rhs> solve(
- const MatrixBase<Rhs>& b) const {
- eigen_assert(m_cpqr.m_isInitialized &&
- "CompleteOrthogonalDecomposition is not initialized.");
- return Solve<CompleteOrthogonalDecomposition, Rhs>(*this, b.derived());
- }
-
- HouseholderSequenceType householderQ(void) const;
- HouseholderSequenceType matrixQ(void) const { return m_cpqr.householderQ(); }
-
- /** \returns the matrix \b Z.
- */
- MatrixType matrixZ() const {
- MatrixType Z = MatrixType::Identity(m_cpqr.cols(), m_cpqr.cols());
- applyZAdjointOnTheLeftInPlace(Z);
- return Z.adjoint();
- }
-
- /** \returns a reference to the matrix where the complete orthogonal
- * decomposition is stored
- */
- const MatrixType& matrixQTZ() const { return m_cpqr.matrixQR(); }
-
- /** \returns a reference to the matrix where the complete orthogonal
- * decomposition is stored.
- * \warning The strict lower part and \code cols() - rank() \endcode right
- * columns of this matrix contains internal values.
- * Only the upper triangular part should be referenced. To get it, use
- * \code matrixT().template triangularView<Upper>() \endcode
- * For rank-deficient matrices, use
- * \code
- * matrixR().topLeftCorner(rank(), rank()).template triangularView<Upper>()
- * \endcode
- */
- const MatrixType& matrixT() const { return m_cpqr.matrixQR(); }
-
- template <typename InputType>
- CompleteOrthogonalDecomposition& compute(const EigenBase<InputType>& matrix) {
- // Compute the column pivoted QR factorization A P = Q R.
- m_cpqr.compute(matrix);
- computeInPlace();
- return *this;
- }
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const {
- return m_cpqr.colsPermutation();
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the complete orthogonal decomposition. It has only linear
- * complexity (that is, O(n) where n is the dimension of the square matrix)
- * as the complete orthogonal decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the
- * matrix of which *this is the complete orthogonal decomposition. It has
- * only linear complexity (that is, O(n) where n is the dimension of the
- * square matrix) as the complete orthogonal decomposition has already been
- * computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow
- * that's inherent to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the complete orthogonal
- * decomposition.
- *
- * \note This method has to determine which pivots should be considered
- * nonzero. For that, it uses the threshold value that you can control by
- * calling setThreshold(const RealScalar&).
- */
- inline Index rank() const { return m_cpqr.rank(); }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the
- * complete orthogonal decomposition.
- *
- * \note This method has to determine which pivots should be considered
- * nonzero. For that, it uses the threshold value that you can control by
- * calling setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const { return m_cpqr.dimensionOfKernel(); }
-
- /** \returns true if the matrix of which *this is the decomposition represents
- * an injective linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered
- * nonzero. For that, it uses the threshold value that you can control by
- * calling setThreshold(const RealScalar&).
- */
- inline bool isInjective() const { return m_cpqr.isInjective(); }
-
- /** \returns true if the matrix of which *this is the decomposition represents
- * a surjective linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered
- * nonzero. For that, it uses the threshold value that you can control by
- * calling setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const { return m_cpqr.isSurjective(); }
-
- /** \returns true if the matrix of which *this is the complete orthogonal
- * decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered
- * nonzero. For that, it uses the threshold value that you can control by
- * calling setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const { return m_cpqr.isInvertible(); }
-
- /** \returns the pseudo-inverse of the matrix of which *this is the complete
- * orthogonal decomposition.
- * \warning: Do not compute \c this->pseudoInverse()*rhs to solve a linear systems.
- * It is more efficient and numerically stable to call \c this->solve(rhs).
- */
- inline const Inverse<CompleteOrthogonalDecomposition> pseudoInverse() const
- {
- return Inverse<CompleteOrthogonalDecomposition>(*this);
- }
-
- inline Index rows() const { return m_cpqr.rows(); }
- inline Index cols() const { return m_cpqr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used
- * to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- inline const HCoeffsType& hCoeffs() const { return m_cpqr.hCoeffs(); }
-
- /** \returns a const reference to the vector of Householder coefficients
- * used to represent the factor \c Z.
- *
- * For advanced uses only.
- */
- const HCoeffsType& zCoeffs() const { return m_zCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as
- * rank(), who need to determine when pivots are to be considered nonzero.
- * Most be called before calling compute().
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By
- * default, this uses a formula to automatically determine a reasonable
- * threshold. Once you have called the present method
- * setThreshold(const RealScalar&), your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly
- * greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call
- * setThreshold(Default_t)
- */
- CompleteOrthogonalDecomposition& setThreshold(const RealScalar& threshold) {
- m_cpqr.setThreshold(threshold);
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default
- * formula for determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- CompleteOrthogonalDecomposition& setThreshold(Default_t) {
- m_cpqr.setThreshold(Default);
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const { return m_cpqr.threshold(); }
-
- /** \returns the number of nonzero pivots in the complete orthogonal
- * decomposition. Here nonzero is meant in the exact sense, not in a
- * fuzzy sense. So that notion isn't really intrinsically interesting,
- * but it is still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const { return m_cpqr.nonzeroPivots(); }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of R.
- */
- inline RealScalar maxPivot() const { return m_cpqr.maxPivot(); }
-
- /** \brief Reports whether the complete orthogonal decomposition was
- * succesful.
- *
- * \note This function always returns \c Success. It is provided for
- * compatibility
- * with other factorization routines.
- * \returns \c Success
- */
- ComputationInfo info() const {
- eigen_assert(m_cpqr.m_isInitialized && "Decomposition is not initialized.");
- return Success;
- }
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
- template <typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC void _solve_impl(const RhsType& rhs, DstType& dst) const;
-#endif
-
- protected:
- static void check_template_parameters() {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- /** Overwrites \b rhs with \f$ \mathbf{Z}^* * \mathbf{rhs} \f$.
- */
- template <typename Rhs>
- void applyZAdjointOnTheLeftInPlace(Rhs& rhs) const;
-
- ColPivHouseholderQR<MatrixType> m_cpqr;
- HCoeffsType m_zCoeffs;
- RowVectorType m_temp;
-};
-
-template <typename MatrixType>
-typename MatrixType::RealScalar
-CompleteOrthogonalDecomposition<MatrixType>::absDeterminant() const {
- return m_cpqr.absDeterminant();
-}
-
-template <typename MatrixType>
-typename MatrixType::RealScalar
-CompleteOrthogonalDecomposition<MatrixType>::logAbsDeterminant() const {
- return m_cpqr.logAbsDeterminant();
-}
-
-/** Performs the complete orthogonal decomposition of the given matrix \a
- * matrix. The result of the factorization is stored into \c *this, and a
- * reference to \c *this is returned.
- *
- * \sa class CompleteOrthogonalDecomposition,
- * CompleteOrthogonalDecomposition(const MatrixType&)
- */
-template <typename MatrixType>
-void CompleteOrthogonalDecomposition<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- // the column permutation is stored as int indices, so just to be sure:
- eigen_assert(m_cpqr.cols() <= NumTraits<int>::highest());
-
- const Index rank = m_cpqr.rank();
- const Index cols = m_cpqr.cols();
- const Index rows = m_cpqr.rows();
- m_zCoeffs.resize((std::min)(rows, cols));
- m_temp.resize(cols);
-
- if (rank < cols) {
- // We have reduced the (permuted) matrix to the form
- // [R11 R12]
- // [ 0 R22]
- // where R11 is r-by-r (r = rank) upper triangular, R12 is
- // r-by-(n-r), and R22 is empty or the norm of R22 is negligible.
- // We now compute the complete orthogonal decomposition by applying
- // Householder transformations from the right to the upper trapezoidal
- // matrix X = [R11 R12] to zero out R12 and obtain the factorization
- // [R11 R12] = [T11 0] * Z, where T11 is r-by-r upper triangular and
- // Z = Z(0) * Z(1) ... Z(r-1) is an n-by-n orthogonal matrix.
- // We store the data representing Z in R12 and m_zCoeffs.
- for (Index k = rank - 1; k >= 0; --k) {
- if (k != rank - 1) {
- // Given the API for Householder reflectors, it is more convenient if
- // we swap the leading parts of columns k and r-1 (zero-based) to form
- // the matrix X_k = [X(0:k, k), X(0:k, r:n)]
- m_cpqr.m_qr.col(k).head(k + 1).swap(
- m_cpqr.m_qr.col(rank - 1).head(k + 1));
- }
- // Construct Householder reflector Z(k) to zero out the last row of X_k,
- // i.e. choose Z(k) such that
- // [X(k, k), X(k, r:n)] * Z(k) = [beta, 0, .., 0].
- RealScalar beta;
- m_cpqr.m_qr.row(k)
- .tail(cols - rank + 1)
- .makeHouseholderInPlace(m_zCoeffs(k), beta);
- m_cpqr.m_qr(k, rank - 1) = beta;
- if (k > 0) {
- // Apply Z(k) to the first k rows of X_k
- m_cpqr.m_qr.topRightCorner(k, cols - rank + 1)
- .applyHouseholderOnTheRight(
- m_cpqr.m_qr.row(k).tail(cols - rank).transpose(), m_zCoeffs(k),
- &m_temp(0));
- }
- if (k != rank - 1) {
- // Swap X(0:k,k) back to its proper location.
- m_cpqr.m_qr.col(k).head(k + 1).swap(
- m_cpqr.m_qr.col(rank - 1).head(k + 1));
- }
- }
- }
-}
-
-template <typename MatrixType>
-template <typename Rhs>
-void CompleteOrthogonalDecomposition<MatrixType>::applyZAdjointOnTheLeftInPlace(
- Rhs& rhs) const {
- const Index cols = this->cols();
- const Index nrhs = rhs.cols();
- const Index rank = this->rank();
- Matrix<typename MatrixType::Scalar, Dynamic, 1> temp((std::max)(cols, nrhs));
- for (Index k = 0; k < rank; ++k) {
- if (k != rank - 1) {
- rhs.row(k).swap(rhs.row(rank - 1));
- }
- rhs.middleRows(rank - 1, cols - rank + 1)
- .applyHouseholderOnTheLeft(
- matrixQTZ().row(k).tail(cols - rank).adjoint(), zCoeffs()(k),
- &temp(0));
- if (k != rank - 1) {
- rhs.row(k).swap(rhs.row(rank - 1));
- }
- }
-}
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template <typename _MatrixType>
-template <typename RhsType, typename DstType>
-void CompleteOrthogonalDecomposition<_MatrixType>::_solve_impl(
- const RhsType& rhs, DstType& dst) const {
- eigen_assert(rhs.rows() == this->rows());
-
- const Index rank = this->rank();
- if (rank == 0) {
- dst.setZero();
- return;
- }
-
- // Compute c = Q^* * rhs
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is
- // Q^* = (H_0 H_1 ...)^T
- typename RhsType::PlainObject c(rhs);
- c.applyOnTheLeft(
- householderSequence(matrixQTZ(), hCoeffs()).setLength(rank).transpose());
-
- // Solve T z = c(1:rank, :)
- dst.topRows(rank) = matrixT()
- .topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solve(c.topRows(rank));
-
- const Index cols = this->cols();
- if (rank < cols) {
- // Compute y = Z^* * [ z ]
- // [ 0 ]
- dst.bottomRows(cols - rank).setZero();
- applyZAdjointOnTheLeftInPlace(dst);
- }
-
- // Undo permutation to get x = P^{-1} * y.
- dst = colsPermutation() * dst;
-}
-#endif
-
-namespace internal {
-
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<CompleteOrthogonalDecomposition<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename CompleteOrthogonalDecomposition<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef CompleteOrthogonalDecomposition<MatrixType> CodType;
- typedef Inverse<CodType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename CodType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.rows()));
- }
-};
-
-} // end namespace internal
-
-/** \returns the matrix Q as a sequence of householder transformations */
-template <typename MatrixType>
-typename CompleteOrthogonalDecomposition<MatrixType>::HouseholderSequenceType
-CompleteOrthogonalDecomposition<MatrixType>::householderQ() const {
- return m_cpqr.householderQ();
-}
-
-/** \return the complete orthogonal decomposition of \c *this.
- *
- * \sa class CompleteOrthogonalDecomposition
- */
-template <typename Derived>
-const CompleteOrthogonalDecomposition<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::completeOrthogonalDecomposition() const {
- return CompleteOrthogonalDecomposition<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_COMPLETEORTHOGONALDECOMPOSITION_H
diff --git a/eigen/Eigen/src/QR/FullPivHouseholderQR.h b/eigen/Eigen/src/QR/FullPivHouseholderQR.h
deleted file mode 100644
index e489bdd..0000000
--- a/eigen/Eigen/src/QR/FullPivHouseholderQR.h
+++ /dev/null
@@ -1,676 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-#define EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
-
-namespace Eigen {
-
-namespace internal {
-
-template<typename _MatrixType> struct traits<FullPivHouseholderQR<_MatrixType> >
- : traits<_MatrixType>
-{
- enum { Flags = 0 };
-};
-
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType;
-
-template<typename MatrixType>
-struct traits<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
- typedef typename MatrixType::PlainObject ReturnType;
-};
-
-} // end namespace internal
-
-/** \ingroup QR_Module
- *
- * \class FullPivHouseholderQR
- *
- * \brief Householder rank-revealing QR decomposition of a matrix with full pivoting
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a rank-revealing QR decomposition of a matrix \b A into matrices \b P, \b P', \b Q and \b R
- * such that
- * \f[
- * \mathbf{P} \, \mathbf{A} \, \mathbf{P}' = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b P and \b P' are permutation matrices, \b Q a unitary matrix
- * and \b R an upper triangular matrix.
- *
- * This decomposition performs a very prudent full pivoting in order to be rank-revealing and achieve optimal
- * numerical stability. The trade-off is that it is slower than HouseholderQR and ColPivHouseholderQR.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::fullPivHouseholderQr()
- */
-template<typename _MatrixType> class FullPivHouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- // FIXME should be int
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef internal::FullPivHouseholderQRMatrixQReturnType<MatrixType> MatrixQReturnType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<StorageIndex, 1,
- EIGEN_SIZE_MIN_PREFER_DYNAMIC(ColsAtCompileTime,RowsAtCompileTime), RowMajor, 1,
- EIGEN_SIZE_MIN_PREFER_FIXED(MaxColsAtCompileTime,MaxRowsAtCompileTime)> IntDiagSizeVectorType;
- typedef PermutationMatrix<ColsAtCompileTime, MaxColsAtCompileTime> PermutationType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef typename internal::plain_col_type<MatrixType>::type ColVectorType;
- typedef typename MatrixType::PlainObject PlainObject;
-
- /** \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via FullPivHouseholderQR::compute(const MatrixType&).
- */
- FullPivHouseholderQR()
- : m_qr(),
- m_hCoeffs(),
- m_rows_transpositions(),
- m_cols_transpositions(),
- m_cols_permutation(),
- m_temp(),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa FullPivHouseholderQR()
- */
- FullPivHouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_rows_transpositions((std::min)(rows,cols)),
- m_cols_transpositions((std::min)(rows,cols)),
- m_cols_permutation(cols),
- m_temp(cols),
- m_isInitialized(false),
- m_usePrescribedThreshold(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * FullPivHouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit FullPivHouseholderQR(const EigenBase<InputType>& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_permutation(matrix.cols()),
- m_temp(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- compute(matrix.derived());
- }
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref.
- *
- * \sa FullPivHouseholderQR(const EigenBase&)
- */
- template<typename InputType>
- explicit FullPivHouseholderQR(EigenBase<InputType>& matrix)
- : m_qr(matrix.derived()),
- m_hCoeffs((std::min)(matrix.rows(), matrix.cols())),
- m_rows_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_transpositions((std::min)(matrix.rows(), matrix.cols())),
- m_cols_permutation(matrix.cols()),
- m_temp(matrix.cols()),
- m_isInitialized(false),
- m_usePrescribedThreshold(false)
- {
- computeInPlace();
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * \c *this is the QR decomposition.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns the exact or least-square solution if the rank is greater or equal to the number of columns of A,
- * and an arbitrary solution otherwise.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include FullPivHouseholderQR_solve.cpp
- * Output: \verbinclude FullPivHouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const Solve<FullPivHouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return Solve<FullPivHouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** \returns Expression object representing the matrix Q
- */
- MatrixQReturnType matrixQ(void) const;
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_qr;
- }
-
- template<typename InputType>
- FullPivHouseholderQR& compute(const EigenBase<InputType>& matrix);
-
- /** \returns a const reference to the column permutation matrix */
- const PermutationType& colsPermutation() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_cols_permutation;
- }
-
- /** \returns a const reference to the vector of indices representing the rows transpositions */
- const IntDiagSizeVectorType& rowsTranspositions() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return m_rows_transpositions;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- /** \returns the rank of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index rank() const
- {
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- RealScalar premultiplied_threshold = abs(m_maxpivot) * threshold();
- Index result = 0;
- for(Index i = 0; i < m_nonzero_pivots; ++i)
- result += (abs(m_qr.coeff(i,i)) > premultiplied_threshold);
- return result;
- }
-
- /** \returns the dimension of the kernel of the matrix of which *this is the QR decomposition.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline Index dimensionOfKernel() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return cols() - rank();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents an injective
- * linear map, i.e. has trivial kernel; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == cols();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition represents a surjective
- * linear map; false otherwise.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isSurjective() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return rank() == rows();
- }
-
- /** \returns true if the matrix of which *this is the QR decomposition is invertible.
- *
- * \note This method has to determine which pivots should be considered nonzero.
- * For that, it uses the threshold value that you can control by calling
- * setThreshold(const RealScalar&).
- */
- inline bool isInvertible() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return isInjective() && isSurjective();
- }
-
- /** \returns the inverse of the matrix of which *this is the QR decomposition.
- *
- * \note If this matrix is not invertible, the returned matrix has undefined coefficients.
- * Use isInvertible() to first determine whether this matrix is invertible.
- */
- inline const Inverse<FullPivHouseholderQR> inverse() const
- {
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return Inverse<FullPivHouseholderQR>(*this);
- }
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- /** Allows to prescribe a threshold to be used by certain methods, such as rank(),
- * who need to determine when pivots are to be considered nonzero. This is not used for the
- * QR decomposition itself.
- *
- * When it needs to get the threshold value, Eigen calls threshold(). By default, this
- * uses a formula to automatically determine a reasonable threshold.
- * Once you have called the present method setThreshold(const RealScalar&),
- * your value is used instead.
- *
- * \param threshold The new value to use as the threshold.
- *
- * A pivot will be considered nonzero if its absolute value is strictly greater than
- * \f$ \vert pivot \vert \leqslant threshold \times \vert maxpivot \vert \f$
- * where maxpivot is the biggest pivot.
- *
- * If you want to come back to the default behavior, call setThreshold(Default_t)
- */
- FullPivHouseholderQR& setThreshold(const RealScalar& threshold)
- {
- m_usePrescribedThreshold = true;
- m_prescribedThreshold = threshold;
- return *this;
- }
-
- /** Allows to come back to the default behavior, letting Eigen use its default formula for
- * determining the threshold.
- *
- * You should pass the special object Eigen::Default as parameter here.
- * \code qr.setThreshold(Eigen::Default); \endcode
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- FullPivHouseholderQR& setThreshold(Default_t)
- {
- m_usePrescribedThreshold = false;
- return *this;
- }
-
- /** Returns the threshold that will be used by certain methods such as rank().
- *
- * See the documentation of setThreshold(const RealScalar&).
- */
- RealScalar threshold() const
- {
- eigen_assert(m_isInitialized || m_usePrescribedThreshold);
- return m_usePrescribedThreshold ? m_prescribedThreshold
- // this formula comes from experimenting (see "LU precision tuning" thread on the list)
- // and turns out to be identical to Higham's formula used already in LDLt.
- : NumTraits<Scalar>::epsilon() * RealScalar(m_qr.diagonalSize());
- }
-
- /** \returns the number of nonzero pivots in the QR decomposition.
- * Here nonzero is meant in the exact sense, not in a fuzzy sense.
- * So that notion isn't really intrinsically interesting, but it is
- * still useful when implementing algorithms.
- *
- * \sa rank()
- */
- inline Index nonzeroPivots() const
- {
- eigen_assert(m_isInitialized && "LU is not initialized.");
- return m_nonzero_pivots;
- }
-
- /** \returns the absolute value of the biggest pivot, i.e. the biggest
- * diagonal coefficient of U.
- */
- RealScalar maxPivot() const { return m_maxpivot; }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
- #endif
-
- protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- IntDiagSizeVectorType m_rows_transpositions;
- IntDiagSizeVectorType m_cols_transpositions;
- PermutationType m_cols_permutation;
- RowVectorType m_temp;
- bool m_isInitialized, m_usePrescribedThreshold;
- RealScalar m_prescribedThreshold, m_maxpivot;
- Index m_nonzero_pivots;
- RealScalar m_precision;
- Index m_det_pq;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar FullPivHouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class FullPivHouseholderQR, FullPivHouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-template<typename InputType>
-FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(const EigenBase<InputType>& matrix)
-{
- m_qr = matrix.derived();
- computeInPlace();
- return *this;
-}
-
-template<typename MatrixType>
-void FullPivHouseholderQR<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- using std::abs;
- Index rows = m_qr.rows();
- Index cols = m_qr.cols();
- Index size = (std::min)(rows,cols);
-
-
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- m_precision = NumTraits<Scalar>::epsilon() * RealScalar(size);
-
- m_rows_transpositions.resize(size);
- m_cols_transpositions.resize(size);
- Index number_of_transpositions = 0;
-
- RealScalar biggest(0);
-
- m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
- m_maxpivot = RealScalar(0);
-
- for (Index k = 0; k < size; ++k)
- {
- Index row_of_biggest_in_corner, col_of_biggest_in_corner;
- typedef internal::scalar_score_coeff_op<Scalar> Scoring;
- typedef typename Scoring::result_type Score;
-
- Score score = m_qr.bottomRightCorner(rows-k, cols-k)
- .unaryExpr(Scoring())
- .maxCoeff(&row_of_biggest_in_corner, &col_of_biggest_in_corner);
- row_of_biggest_in_corner += k;
- col_of_biggest_in_corner += k;
- RealScalar biggest_in_corner = internal::abs_knowing_score<Scalar>()(m_qr(row_of_biggest_in_corner, col_of_biggest_in_corner), score);
- if(k==0) biggest = biggest_in_corner;
-
- // if the corner is negligible, then we have less than full rank, and we can finish early
- if(internal::isMuchSmallerThan(biggest_in_corner, biggest, m_precision))
- {
- m_nonzero_pivots = k;
- for(Index i = k; i < size; i++)
- {
- m_rows_transpositions.coeffRef(i) = i;
- m_cols_transpositions.coeffRef(i) = i;
- m_hCoeffs.coeffRef(i) = Scalar(0);
- }
- break;
- }
-
- m_rows_transpositions.coeffRef(k) = row_of_biggest_in_corner;
- m_cols_transpositions.coeffRef(k) = col_of_biggest_in_corner;
- if(k != row_of_biggest_in_corner) {
- m_qr.row(k).tail(cols-k).swap(m_qr.row(row_of_biggest_in_corner).tail(cols-k));
- ++number_of_transpositions;
- }
- if(k != col_of_biggest_in_corner) {
- m_qr.col(k).swap(m_qr.col(col_of_biggest_in_corner));
- ++number_of_transpositions;
- }
-
- RealScalar beta;
- m_qr.col(k).tail(rows-k).makeHouseholderInPlace(m_hCoeffs.coeffRef(k), beta);
- m_qr.coeffRef(k,k) = beta;
-
- // remember the maximum absolute value of diagonal coefficients
- if(abs(beta) > m_maxpivot) m_maxpivot = abs(beta);
-
- m_qr.bottomRightCorner(rows-k, cols-k-1)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), m_hCoeffs.coeffRef(k), &m_temp.coeffRef(k+1));
- }
-
- m_cols_permutation.setIdentity(cols);
- for(Index k = 0; k < size; ++k)
- m_cols_permutation.applyTranspositionOnTheRight(k, m_cols_transpositions.coeff(k));
-
- m_det_pq = (number_of_transpositions%2) ? -1 : 1;
- m_isInitialized = true;
-}
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename _MatrixType>
-template<typename RhsType, typename DstType>
-void FullPivHouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
-{
- eigen_assert(rhs.rows() == rows());
- const Index l_rank = rank();
-
- // FIXME introduce nonzeroPivots() and use it here. and more generally,
- // make the same improvements in this dec as in FullPivLU.
- if(l_rank==0)
- {
- dst.setZero();
- return;
- }
-
- typename RhsType::PlainObject c(rhs);
-
- Matrix<Scalar,1,RhsType::ColsAtCompileTime> temp(rhs.cols());
- for (Index k = 0; k < l_rank; ++k)
- {
- Index remainingSize = rows()-k;
- c.row(k).swap(c.row(m_rows_transpositions.coeff(k)));
- c.bottomRightCorner(remainingSize, rhs.cols())
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(remainingSize-1),
- m_hCoeffs.coeff(k), &temp.coeffRef(0));
- }
-
- m_qr.topLeftCorner(l_rank, l_rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(l_rank));
-
- for(Index i = 0; i < l_rank; ++i) dst.row(m_cols_permutation.indices().coeff(i)) = c.row(i);
- for(Index i = l_rank; i < cols(); ++i) dst.row(m_cols_permutation.indices().coeff(i)).setZero();
-}
-#endif
-
-namespace internal {
-
-template<typename DstXprType, typename MatrixType>
-struct Assignment<DstXprType, Inverse<FullPivHouseholderQR<MatrixType> >, internal::assign_op<typename DstXprType::Scalar,typename FullPivHouseholderQR<MatrixType>::Scalar>, Dense2Dense>
-{
- typedef FullPivHouseholderQR<MatrixType> QrType;
- typedef Inverse<QrType> SrcXprType;
- static void run(DstXprType &dst, const SrcXprType &src, const internal::assign_op<typename DstXprType::Scalar,typename QrType::Scalar> &)
- {
- dst = src.nestedExpression().solve(MatrixType::Identity(src.rows(), src.cols()));
- }
-};
-
-/** \ingroup QR_Module
- *
- * \brief Expression type for return value of FullPivHouseholderQR::matrixQ()
- *
- * \tparam MatrixType type of underlying dense matrix
- */
-template<typename MatrixType> struct FullPivHouseholderQRMatrixQReturnType
- : public ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-{
-public:
- typedef typename FullPivHouseholderQR<MatrixType>::IntDiagSizeVectorType IntDiagSizeVectorType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef Matrix<typename MatrixType::Scalar, 1, MatrixType::RowsAtCompileTime, RowMajor, 1,
- MatrixType::MaxRowsAtCompileTime> WorkVectorType;
-
- FullPivHouseholderQRMatrixQReturnType(const MatrixType& qr,
- const HCoeffsType& hCoeffs,
- const IntDiagSizeVectorType& rowsTranspositions)
- : m_qr(qr),
- m_hCoeffs(hCoeffs),
- m_rowsTranspositions(rowsTranspositions)
- {}
-
- template <typename ResultType>
- void evalTo(ResultType& result) const
- {
- const Index rows = m_qr.rows();
- WorkVectorType workspace(rows);
- evalTo(result, workspace);
- }
-
- template <typename ResultType>
- void evalTo(ResultType& result, WorkVectorType& workspace) const
- {
- using numext::conj;
- // compute the product H'_0 H'_1 ... H'_n-1,
- // where H_k is the k-th Householder transformation I - h_k v_k v_k'
- // and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
- const Index rows = m_qr.rows();
- const Index cols = m_qr.cols();
- const Index size = (std::min)(rows, cols);
- workspace.resize(rows);
- result.setIdentity(rows, rows);
- for (Index k = size-1; k >= 0; k--)
- {
- result.block(k, k, rows-k, rows-k)
- .applyHouseholderOnTheLeft(m_qr.col(k).tail(rows-k-1), conj(m_hCoeffs.coeff(k)), &workspace.coeffRef(k));
- result.row(k).swap(result.row(m_rowsTranspositions.coeff(k)));
- }
- }
-
- Index rows() const { return m_qr.rows(); }
- Index cols() const { return m_qr.rows(); }
-
-protected:
- typename MatrixType::Nested m_qr;
- typename HCoeffsType::Nested m_hCoeffs;
- typename IntDiagSizeVectorType::Nested m_rowsTranspositions;
-};
-
-// template<typename MatrixType>
-// struct evaluator<FullPivHouseholderQRMatrixQReturnType<MatrixType> >
-// : public evaluator<ReturnByValue<FullPivHouseholderQRMatrixQReturnType<MatrixType> > >
-// {};
-
-} // end namespace internal
-
-template<typename MatrixType>
-inline typename FullPivHouseholderQR<MatrixType>::MatrixQReturnType FullPivHouseholderQR<MatrixType>::matrixQ() const
-{
- eigen_assert(m_isInitialized && "FullPivHouseholderQR is not initialized.");
- return MatrixQReturnType(m_qr, m_hCoeffs, m_rows_transpositions);
-}
-
-/** \return the full-pivoting Householder QR decomposition of \c *this.
- *
- * \sa class FullPivHouseholderQR
- */
-template<typename Derived>
-const FullPivHouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::fullPivHouseholderQr() const
-{
- return FullPivHouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_FULLPIVOTINGHOUSEHOLDERQR_H
diff --git a/eigen/Eigen/src/QR/HouseholderQR.h b/eigen/Eigen/src/QR/HouseholderQR.h
deleted file mode 100644
index 3513d99..0000000
--- a/eigen/Eigen/src/QR/HouseholderQR.h
+++ /dev/null
@@ -1,409 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
-// Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
-// Copyright (C) 2010 Vincent Lejeune
-//
-// This Source Code Form is subject to the terms of the Mozilla
-// Public License v. 2.0. If a copy of the MPL was not distributed
-// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
-
-#ifndef EIGEN_QR_H
-#define EIGEN_QR_H
-
-namespace Eigen {
-
-/** \ingroup QR_Module
- *
- *
- * \class HouseholderQR
- *
- * \brief Householder QR decomposition of a matrix
- *
- * \tparam _MatrixType the type of the matrix of which we are computing the QR decomposition
- *
- * This class performs a QR decomposition of a matrix \b A into matrices \b Q and \b R
- * such that
- * \f[
- * \mathbf{A} = \mathbf{Q} \, \mathbf{R}
- * \f]
- * by using Householder transformations. Here, \b Q a unitary matrix and \b R an upper triangular matrix.
- * The result is stored in a compact way compatible with LAPACK.
- *
- * Note that no pivoting is performed. This is \b not a rank-revealing decomposition.
- * If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
- *
- * This Householder QR decomposition is faster, but less numerically stable and less feature-full than
- * FullPivHouseholderQR or ColPivHouseholderQR.
- *
- * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism.
- *
- * \sa MatrixBase::householderQr()
- */
-template<typename _MatrixType> class HouseholderQR
-{
- public:
-
- typedef _MatrixType MatrixType;
- enum {
- RowsAtCompileTime = MatrixType::RowsAtCompileTime,
- ColsAtCompileTime = MatrixType::ColsAtCompileTime,
- MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
- MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime
- };
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- // FIXME should be int
- typedef typename MatrixType::StorageIndex StorageIndex;
- typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType;
- typedef typename internal::plain_diag_type<MatrixType>::type HCoeffsType;
- typedef typename internal::plain_row_type<MatrixType>::type RowVectorType;
- typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename HCoeffsType::ConjugateReturnType>::type> HouseholderSequenceType;
-
- /**
- * \brief Default Constructor.
- *
- * The default constructor is useful in cases in which the user intends to
- * perform decompositions via HouseholderQR::compute(const MatrixType&).
- */
- HouseholderQR() : m_qr(), m_hCoeffs(), m_temp(), m_isInitialized(false) {}
-
- /** \brief Default Constructor with memory preallocation
- *
- * Like the default constructor but with preallocation of the internal data
- * according to the specified problem \a size.
- * \sa HouseholderQR()
- */
- HouseholderQR(Index rows, Index cols)
- : m_qr(rows, cols),
- m_hCoeffs((std::min)(rows,cols)),
- m_temp(cols),
- m_isInitialized(false) {}
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This constructor computes the QR factorization of the matrix \a matrix by calling
- * the method compute(). It is a short cut for:
- *
- * \code
- * HouseholderQR<MatrixType> qr(matrix.rows(), matrix.cols());
- * qr.compute(matrix);
- * \endcode
- *
- * \sa compute()
- */
- template<typename InputType>
- explicit HouseholderQR(const EigenBase<InputType>& matrix)
- : m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- compute(matrix.derived());
- }
-
-
- /** \brief Constructs a QR factorization from a given matrix
- *
- * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when
- * \c MatrixType is a Eigen::Ref.
- *
- * \sa HouseholderQR(const EigenBase&)
- */
- template<typename InputType>
- explicit HouseholderQR(EigenBase<InputType>& matrix)
- : m_qr(matrix.derived()),
- m_hCoeffs((std::min)(matrix.rows(),matrix.cols())),
- m_temp(matrix.cols()),
- m_isInitialized(false)
- {
- computeInPlace();
- }
-
- /** This method finds a solution x to the equation Ax=b, where A is the matrix of which
- * *this is the QR decomposition, if any exists.
- *
- * \param b the right-hand-side of the equation to solve.
- *
- * \returns a solution.
- *
- * \note_about_checking_solutions
- *
- * \note_about_arbitrary_choice_of_solution
- *
- * Example: \include HouseholderQR_solve.cpp
- * Output: \verbinclude HouseholderQR_solve.out
- */
- template<typename Rhs>
- inline const Solve<HouseholderQR, Rhs>
- solve(const MatrixBase<Rhs>& b) const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return Solve<HouseholderQR, Rhs>(*this, b.derived());
- }
-
- /** This method returns an expression of the unitary matrix Q as a sequence of Householder transformations.
- *
- * The returned expression can directly be used to perform matrix products. It can also be assigned to a dense Matrix object.
- * Here is an example showing how to recover the full or thin matrix Q, as well as how to perform matrix products using operator*:
- *
- * Example: \include HouseholderQR_householderQ.cpp
- * Output: \verbinclude HouseholderQR_householderQ.out
- */
- HouseholderSequenceType householderQ() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return HouseholderSequenceType(m_qr, m_hCoeffs.conjugate());
- }
-
- /** \returns a reference to the matrix where the Householder QR decomposition is stored
- * in a LAPACK-compatible way.
- */
- const MatrixType& matrixQR() const
- {
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- return m_qr;
- }
-
- template<typename InputType>
- HouseholderQR& compute(const EigenBase<InputType>& matrix) {
- m_qr = matrix.derived();
- computeInPlace();
- return *this;
- }
-
- /** \returns the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \warning a determinant can be very big or small, so for matrices
- * of large enough dimension, there is a risk of overflow/underflow.
- * One way to work around that is to use logAbsDeterminant() instead.
- *
- * \sa logAbsDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar absDeterminant() const;
-
- /** \returns the natural log of the absolute value of the determinant of the matrix of which
- * *this is the QR decomposition. It has only linear complexity
- * (that is, O(n) where n is the dimension of the square matrix)
- * as the QR decomposition has already been computed.
- *
- * \note This is only for square matrices.
- *
- * \note This method is useful to work around the risk of overflow/underflow that's inherent
- * to determinant computation.
- *
- * \sa absDeterminant(), MatrixBase::determinant()
- */
- typename MatrixType::RealScalar logAbsDeterminant() const;
-
- inline Index rows() const { return m_qr.rows(); }
- inline Index cols() const { return m_qr.cols(); }
-
- /** \returns a const reference to the vector of Householder coefficients used to represent the factor \c Q.
- *
- * For advanced uses only.
- */
- const HCoeffsType& hCoeffs() const { return m_hCoeffs; }
-
- #ifndef EIGEN_PARSED_BY_DOXYGEN
- template<typename RhsType, typename DstType>
- EIGEN_DEVICE_FUNC
- void _solve_impl(const RhsType &rhs, DstType &dst) const;
- #endif
-
- protected:
-
- static void check_template_parameters()
- {
- EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
- }
-
- void computeInPlace();
-
- MatrixType m_qr;
- HCoeffsType m_hCoeffs;
- RowVectorType m_temp;
- bool m_isInitialized;
-};
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::absDeterminant() const
-{
- using std::abs;
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return abs(m_qr.diagonal().prod());
-}
-
-template<typename MatrixType>
-typename MatrixType::RealScalar HouseholderQR<MatrixType>::logAbsDeterminant() const
-{
- eigen_assert(m_isInitialized && "HouseholderQR is not initialized.");
- eigen_assert(m_qr.rows() == m_qr.cols() && "You can't take the determinant of a non-square matrix!");
- return m_qr.diagonal().cwiseAbs().array().log().sum();
-}
-
-namespace internal {
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs>
-void householder_qr_inplace_unblocked(MatrixQR& mat, HCoeffs& hCoeffs, typename MatrixQR::Scalar* tempData = 0)
-{
- typedef typename MatrixQR::Scalar Scalar;
- typedef typename MatrixQR::RealScalar RealScalar;
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows,cols);
-
- eigen_assert(hCoeffs.size() == size);
-
- typedef Matrix<Scalar,MatrixQR::ColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- for(Index k = 0; k < size; ++k)
- {
- Index remainingRows = rows - k;
- Index remainingCols = cols - k - 1;
-
- RealScalar beta;
- mat.col(k).tail(remainingRows).makeHouseholderInPlace(hCoeffs.coeffRef(k), beta);
- mat.coeffRef(k,k) = beta;
-
- // apply H to remaining part of m_qr from the left
- mat.bottomRightCorner(remainingRows, remainingCols)
- .applyHouseholderOnTheLeft(mat.col(k).tail(remainingRows-1), hCoeffs.coeffRef(k), tempData+k+1);
- }
-}
-
-/** \internal */
-template<typename MatrixQR, typename HCoeffs,
- typename MatrixQRScalar = typename MatrixQR::Scalar,
- bool InnerStrideIsOne = (MatrixQR::InnerStrideAtCompileTime == 1 && HCoeffs::InnerStrideAtCompileTime == 1)>
-struct householder_qr_inplace_blocked
-{
- // This is specialized for MKL-supported Scalar types in HouseholderQR_MKL.h
- static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index maxBlockSize=32,
- typename MatrixQR::Scalar* tempData = 0)
- {
- typedef typename MatrixQR::Scalar Scalar;
- typedef Block<MatrixQR,Dynamic,Dynamic> BlockType;
-
- Index rows = mat.rows();
- Index cols = mat.cols();
- Index size = (std::min)(rows, cols);
-
- typedef Matrix<Scalar,Dynamic,1,ColMajor,MatrixQR::MaxColsAtCompileTime,1> TempType;
- TempType tempVector;
- if(tempData==0)
- {
- tempVector.resize(cols);
- tempData = tempVector.data();
- }
-
- Index blockSize = (std::min)(maxBlockSize,size);
-
- Index k = 0;
- for (k = 0; k < size; k += blockSize)
- {
- Index bs = (std::min)(size-k,blockSize); // actual size of the block
- Index tcols = cols - k - bs; // trailing columns
- Index brows = rows-k; // rows of the block
-
- // partition the matrix:
- // A00 | A01 | A02
- // mat = A10 | A11 | A12
- // A20 | A21 | A22
- // and performs the qr dec of [A11^T A12^T]^T
- // and update [A21^T A22^T]^T using level 3 operations.
- // Finally, the algorithm continue on A22
-
- BlockType A11_21 = mat.block(k,k,brows,bs);
- Block<HCoeffs,Dynamic,1> hCoeffsSegment = hCoeffs.segment(k,bs);
-
- householder_qr_inplace_unblocked(A11_21, hCoeffsSegment, tempData);
-
- if(tcols)
- {
- BlockType A21_22 = mat.block(k,k+bs,brows,tcols);
- apply_block_householder_on_the_left(A21_22,A11_21,hCoeffsSegment, false); // false == backward
- }
- }
- }
-};
-
-} // end namespace internal
-
-#ifndef EIGEN_PARSED_BY_DOXYGEN
-template<typename _MatrixType>
-template<typename RhsType, typename DstType>
-void HouseholderQR<_MatrixType>::_solve_impl(const RhsType &rhs, DstType &dst) const
-{
- const Index rank = (std::min)(rows(), cols());
- eigen_assert(rhs.rows() == rows());
-
- typename RhsType::PlainObject c(rhs);
-
- // Note that the matrix Q = H_0^* H_1^*... so its inverse is Q^* = (H_0 H_1 ...)^T
- c.applyOnTheLeft(householderSequence(
- m_qr.leftCols(rank),
- m_hCoeffs.head(rank)).transpose()
- );
-
- m_qr.topLeftCorner(rank, rank)
- .template triangularView<Upper>()
- .solveInPlace(c.topRows(rank));
-
- dst.topRows(rank) = c.topRows(rank);
- dst.bottomRows(cols()-rank).setZero();
-}
-#endif
-
-/** Performs the QR factorization of the given matrix \a matrix. The result of
- * the factorization is stored into \c *this, and a reference to \c *this
- * is returned.
- *
- * \sa class HouseholderQR, HouseholderQR(const MatrixType&)
- */
-template<typename MatrixType>
-void HouseholderQR<MatrixType>::computeInPlace()
-{
- check_template_parameters();
-
- Index rows = m_qr.rows();
- Index cols = m_qr.cols();
- Index size = (std::min)(rows,cols);
-
- m_hCoeffs.resize(size);
-
- m_temp.resize(cols);
-
- internal::householder_qr_inplace_blocked<MatrixType, HCoeffsType>::run(m_qr, m_hCoeffs, 48, m_temp.data());
-
- m_isInitialized = true;
-}
-
-/** \return the Householder QR decomposition of \c *this.
- *
- * \sa class HouseholderQR
- */
-template<typename Derived>
-const HouseholderQR<typename MatrixBase<Derived>::PlainObject>
-MatrixBase<Derived>::householderQr() const
-{
- return HouseholderQR<PlainObject>(eval());
-}
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_H
diff --git a/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h b/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h
deleted file mode 100644
index 1dc7d53..0000000
--- a/eigen/Eigen/src/QR/HouseholderQR_LAPACKE.h
+++ /dev/null
@@ -1,68 +0,0 @@
-/*
- Copyright (c) 2011, Intel Corporation. All rights reserved.
-
- Redistribution and use in source and binary forms, with or without modification,
- are permitted provided that the following conditions are met:
-
- * Redistributions of source code must retain the above copyright notice, this
- list of conditions and the following disclaimer.
- * Redistributions in binary form must reproduce the above copyright notice,
- this list of conditions and the following disclaimer in the documentation
- and/or other materials provided with the distribution.
- * Neither the name of Intel Corporation nor the names of its contributors may
- be used to endorse or promote products derived from this software without
- specific prior written permission.
-
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
- ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
- ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- ********************************************************************************
- * Content : Eigen bindings to LAPACKe
- * Householder QR decomposition of a matrix w/o pivoting based on
- * LAPACKE_?geqrf function.
- ********************************************************************************
-*/
-
-#ifndef EIGEN_QR_LAPACKE_H
-#define EIGEN_QR_LAPACKE_H
-
-namespace Eigen {
-
-namespace internal {
-
-/** \internal Specialization for the data types supported by LAPACKe */
-
-#define EIGEN_LAPACKE_QR_NOPIV(EIGTYPE, LAPACKE_TYPE, LAPACKE_PREFIX) \
-template<typename MatrixQR, typename HCoeffs> \
-struct householder_qr_inplace_blocked<MatrixQR, HCoeffs, EIGTYPE, true> \
-{ \
- static void run(MatrixQR& mat, HCoeffs& hCoeffs, Index = 32, \
- typename MatrixQR::Scalar* = 0) \
- { \
- lapack_int m = (lapack_int) mat.rows(); \
- lapack_int n = (lapack_int) mat.cols(); \
- lapack_int lda = (lapack_int) mat.outerStride(); \
- lapack_int matrix_order = (MatrixQR::IsRowMajor) ? LAPACK_ROW_MAJOR : LAPACK_COL_MAJOR; \
- LAPACKE_##LAPACKE_PREFIX##geqrf( matrix_order, m, n, (LAPACKE_TYPE*)mat.data(), lda, (LAPACKE_TYPE*)hCoeffs.data()); \
- hCoeffs.adjointInPlace(); \
- } \
-};
-
-EIGEN_LAPACKE_QR_NOPIV(double, double, d)
-EIGEN_LAPACKE_QR_NOPIV(float, float, s)
-EIGEN_LAPACKE_QR_NOPIV(dcomplex, lapack_complex_double, z)
-EIGEN_LAPACKE_QR_NOPIV(scomplex, lapack_complex_float, c)
-
-} // end namespace internal
-
-} // end namespace Eigen
-
-#endif // EIGEN_QR_LAPACKE_H