diff options
Diffstat (limited to 'eigen/Eigen/src/SparseLU/SparseLU.h')
-rw-r--r-- | eigen/Eigen/src/SparseLU/SparseLU.h | 806 |
1 files changed, 806 insertions, 0 deletions
diff --git a/eigen/Eigen/src/SparseLU/SparseLU.h b/eigen/Eigen/src/SparseLU/SparseLU.h new file mode 100644 index 0000000..bdc4f19 --- /dev/null +++ b/eigen/Eigen/src/SparseLU/SparseLU.h @@ -0,0 +1,806 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr> +// Copyright (C) 2012 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + + +#ifndef EIGEN_SPARSE_LU_H +#define EIGEN_SPARSE_LU_H + +namespace Eigen { + +template <typename _MatrixType, typename _OrderingType = COLAMDOrdering<typename _MatrixType::Index> > class SparseLU; +template <typename MappedSparseMatrixType> struct SparseLUMatrixLReturnType; +template <typename MatrixLType, typename MatrixUType> struct SparseLUMatrixUReturnType; + +/** \ingroup SparseLU_Module + * \class SparseLU + * + * \brief Sparse supernodal LU factorization for general matrices + * + * This class implements the supernodal LU factorization for general matrices. + * It uses the main techniques from the sequential SuperLU package + * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real + * and complex arithmetics with single and double precision, depending on the + * scalar type of your input matrix. + * The code has been optimized to provide BLAS-3 operations during supernode-panel updates. + * It benefits directly from the built-in high-performant Eigen BLAS routines. + * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to + * enable a better optimization from the compiler. For best performance, + * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors. + * + * An important parameter of this class is the ordering method. It is used to reorder the columns + * (and eventually the rows) of the matrix to reduce the number of new elements that are created during + * numerical factorization. The cheapest method available is COLAMD. + * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of + * built-in and external ordering methods. + * + * Simple example with key steps + * \code + * VectorXd x(n), b(n); + * SparseMatrix<double, ColMajor> A; + * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<Index> > solver; + * // fill A and b; + * // Compute the ordering permutation vector from the structural pattern of A + * solver.analyzePattern(A); + * // Compute the numerical factorization + * solver.factorize(A); + * //Use the factors to solve the linear system + * x = solver.solve(b); + * \endcode + * + * \warning The input matrix A should be in a \b compressed and \b column-major form. + * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix. + * + * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix. + * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization. + * If this is the case for your matrices, you can try the basic scaling method at + * "unsupported/Eigen/src/IterativeSolvers/Scaling.h" + * + * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<> + * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS. Default is COLMAD + * + * + * \sa \ref TutorialSparseDirectSolvers + * \sa \ref OrderingMethods_Module + */ +template <typename _MatrixType, typename _OrderingType> +class SparseLU : public internal::SparseLUImpl<typename _MatrixType::Scalar, typename _MatrixType::Index> +{ + public: + typedef _MatrixType MatrixType; + typedef _OrderingType OrderingType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef SparseMatrix<Scalar,ColMajor,Index> NCMatrix; + typedef internal::MappedSuperNodalMatrix<Scalar, Index> SCMatrix; + typedef Matrix<Scalar,Dynamic,1> ScalarVector; + typedef Matrix<Index,Dynamic,1> IndexVector; + typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType; + typedef internal::SparseLUImpl<Scalar, Index> Base; + + public: + SparseLU():m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) + { + initperfvalues(); + } + SparseLU(const MatrixType& matrix):m_isInitialized(true),m_lastError(""),m_Ustore(0,0,0,0,0,0),m_symmetricmode(false),m_diagpivotthresh(1.0),m_detPermR(1) + { + initperfvalues(); + compute(matrix); + } + + ~SparseLU() + { + // Free all explicit dynamic pointers + } + + void analyzePattern (const MatrixType& matrix); + void factorize (const MatrixType& matrix); + void simplicialfactorize(const MatrixType& matrix); + + /** + * Compute the symbolic and numeric factorization of the input sparse matrix. + * The input matrix should be in column-major storage. + */ + void compute (const MatrixType& matrix) + { + // Analyze + analyzePattern(matrix); + //Factorize + factorize(matrix); + } + + inline Index rows() const { return m_mat.rows(); } + inline Index cols() const { return m_mat.cols(); } + /** Indicate that the pattern of the input matrix is symmetric */ + void isSymmetric(bool sym) + { + m_symmetricmode = sym; + } + + /** \returns an expression of the matrix L, internally stored as supernodes + * The only operation available with this expression is the triangular solve + * \code + * y = b; matrixL().solveInPlace(y); + * \endcode + */ + SparseLUMatrixLReturnType<SCMatrix> matrixL() const + { + return SparseLUMatrixLReturnType<SCMatrix>(m_Lstore); + } + /** \returns an expression of the matrix U, + * The only operation available with this expression is the triangular solve + * \code + * y = b; matrixU().solveInPlace(y); + * \endcode + */ + SparseLUMatrixUReturnType<SCMatrix,MappedSparseMatrix<Scalar,ColMajor,Index> > matrixU() const + { + return SparseLUMatrixUReturnType<SCMatrix, MappedSparseMatrix<Scalar,ColMajor,Index> >(m_Lstore, m_Ustore); + } + + /** + * \returns a reference to the row matrix permutation \f$ P_r \f$ such that \f$P_r A P_c^T = L U\f$ + * \sa colsPermutation() + */ + inline const PermutationType& rowsPermutation() const + { + return m_perm_r; + } + /** + * \returns a reference to the column matrix permutation\f$ P_c^T \f$ such that \f$P_r A P_c^T = L U\f$ + * \sa rowsPermutation() + */ + inline const PermutationType& colsPermutation() const + { + return m_perm_c; + } + /** Set the threshold used for a diagonal entry to be an acceptable pivot. */ + void setPivotThreshold(const RealScalar& thresh) + { + m_diagpivotthresh = thresh; + } + + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \warning the destination matrix X in X = this->solve(B) must be colmun-major. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::solve_retval<SparseLU, Rhs> solve(const MatrixBase<Rhs>& B) const + { + eigen_assert(m_factorizationIsOk && "SparseLU is not initialized."); + eigen_assert(rows()==B.rows() + && "SparseLU::solve(): invalid number of rows of the right hand side matrix B"); + return internal::solve_retval<SparseLU, Rhs>(*this, B.derived()); + } + + /** \returns the solution X of \f$ A X = B \f$ using the current decomposition of A. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::sparse_solve_retval<SparseLU, Rhs> solve(const SparseMatrixBase<Rhs>& B) const + { + eigen_assert(m_factorizationIsOk && "SparseLU is not initialized."); + eigen_assert(rows()==B.rows() + && "SparseLU::solve(): invalid number of rows of the right hand side matrix B"); + return internal::sparse_solve_retval<SparseLU, Rhs>(*this, B.derived()); + } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the LU factorization reports a problem, zero diagonal for instance + * \c InvalidInput if the input matrix is invalid + * + * \sa iparm() + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + /** + * \returns A string describing the type of error + */ + std::string lastErrorMessage() const + { + return m_lastError; + } + + template<typename Rhs, typename Dest> + bool _solve(const MatrixBase<Rhs> &B, MatrixBase<Dest> &X_base) const + { + Dest& X(X_base.derived()); + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first"); + EIGEN_STATIC_ASSERT((Dest::Flags&RowMajorBit)==0, + THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES); + + // Permute the right hand side to form X = Pr*B + // on return, X is overwritten by the computed solution + X.resize(B.rows(),B.cols()); + + // this ugly const_cast_derived() helps to detect aliasing when applying the permutations + for(Index j = 0; j < B.cols(); ++j) + X.col(j) = rowsPermutation() * B.const_cast_derived().col(j); + + //Forward substitution with L + this->matrixL().solveInPlace(X); + this->matrixU().solveInPlace(X); + + // Permute back the solution + for (Index j = 0; j < B.cols(); ++j) + X.col(j) = colsPermutation().inverse() * X.col(j); + + return true; + } + + /** + * \returns the absolute value of the determinant of the matrix of which + * *this is the QR decomposition. + * + * \warning a determinant can be very big or small, so for matrices + * of large enough dimension, there is a risk of overflow/underflow. + * One way to work around that is to use logAbsDeterminant() instead. + * + * \sa logAbsDeterminant(), signDeterminant() + */ + Scalar absDeterminant() + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Scalar det = Scalar(1.); + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + using std::abs; + det *= abs(it.value()); + break; + } + } + } + return det; + } + + /** \returns the natural log of the absolute value of the determinant of the matrix + * of which **this is the QR decomposition + * + * \note This method is useful to work around the risk of overflow/underflow that's + * inherent to the determinant computation. + * + * \sa absDeterminant(), signDeterminant() + */ + Scalar logAbsDeterminant() const + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + Scalar det = Scalar(0.); + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.row() < j) continue; + if(it.row() == j) + { + using std::log; using std::abs; + det += log(abs(it.value())); + break; + } + } + } + return det; + } + + /** \returns A number representing the sign of the determinant + * + * \sa absDeterminant(), logAbsDeterminant() + */ + Scalar signDeterminant() + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Index det = 1; + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + if(it.value()<0) + det = -det; + else if(it.value()==0) + return 0; + break; + } + } + } + return det * m_detPermR * m_detPermC; + } + + /** \returns The determinant of the matrix. + * + * \sa absDeterminant(), logAbsDeterminant() + */ + Scalar determinant() + { + eigen_assert(m_factorizationIsOk && "The matrix should be factorized first."); + // Initialize with the determinant of the row matrix + Scalar det = Scalar(1.); + // Note that the diagonal blocks of U are stored in supernodes, + // which are available in the L part :) + for (Index j = 0; j < this->cols(); ++j) + { + for (typename SCMatrix::InnerIterator it(m_Lstore, j); it; ++it) + { + if(it.index() == j) + { + det *= it.value(); + break; + } + } + } + return det * Scalar(m_detPermR * m_detPermC); + } + + protected: + // Functions + void initperfvalues() + { + m_perfv.panel_size = 16; + m_perfv.relax = 1; + m_perfv.maxsuper = 128; + m_perfv.rowblk = 16; + m_perfv.colblk = 8; + m_perfv.fillfactor = 20; + } + + // Variables + mutable ComputationInfo m_info; + bool m_isInitialized; + bool m_factorizationIsOk; + bool m_analysisIsOk; + std::string m_lastError; + NCMatrix m_mat; // The input (permuted ) matrix + SCMatrix m_Lstore; // The lower triangular matrix (supernodal) + MappedSparseMatrix<Scalar,ColMajor,Index> m_Ustore; // The upper triangular matrix + PermutationType m_perm_c; // Column permutation + PermutationType m_perm_r ; // Row permutation + IndexVector m_etree; // Column elimination tree + + typename Base::GlobalLU_t m_glu; + + // SparseLU options + bool m_symmetricmode; + // values for performance + internal::perfvalues<Index> m_perfv; + RealScalar m_diagpivotthresh; // Specifies the threshold used for a diagonal entry to be an acceptable pivot + Index m_nnzL, m_nnzU; // Nonzeros in L and U factors + Index m_detPermR, m_detPermC; // Determinants of the permutation matrices + private: + // Disable copy constructor + SparseLU (const SparseLU& ); + +}; // End class SparseLU + + + +// Functions needed by the anaysis phase +/** + * Compute the column permutation to minimize the fill-in + * + * - Apply this permutation to the input matrix - + * + * - Compute the column elimination tree on the permuted matrix + * + * - Postorder the elimination tree and the column permutation + * + */ +template <typename MatrixType, typename OrderingType> +void SparseLU<MatrixType, OrderingType>::analyzePattern(const MatrixType& mat) +{ + + //TODO It is possible as in SuperLU to compute row and columns scaling vectors to equilibrate the matrix mat. + + OrderingType ord; + ord(mat,m_perm_c); + + // Apply the permutation to the column of the input matrix + //First copy the whole input matrix. + m_mat = mat; + if (m_perm_c.size()) { + m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. FIXME : This vector is filled but not subsequently used. + //Then, permute only the column pointers + const Index * outerIndexPtr; + if (mat.isCompressed()) outerIndexPtr = mat.outerIndexPtr(); + else + { + Index *outerIndexPtr_t = new Index[mat.cols()+1]; + for(Index i = 0; i <= mat.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; + outerIndexPtr = outerIndexPtr_t; + } + for (Index i = 0; i < mat.cols(); i++) + { + m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; + m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; + } + if(!mat.isCompressed()) delete[] outerIndexPtr; + } + // Compute the column elimination tree of the permuted matrix + IndexVector firstRowElt; + internal::coletree(m_mat, m_etree,firstRowElt); + + // In symmetric mode, do not do postorder here + if (!m_symmetricmode) { + IndexVector post, iwork; + // Post order etree + internal::treePostorder(m_mat.cols(), m_etree, post); + + + // Renumber etree in postorder + Index m = m_mat.cols(); + iwork.resize(m+1); + for (Index i = 0; i < m; ++i) iwork(post(i)) = post(m_etree(i)); + m_etree = iwork; + + // Postmultiply A*Pc by post, i.e reorder the matrix according to the postorder of the etree + PermutationType post_perm(m); + for (Index i = 0; i < m; i++) + post_perm.indices()(i) = post(i); + + // Combine the two permutations : postorder the permutation for future use + if(m_perm_c.size()) { + m_perm_c = post_perm * m_perm_c; + } + + } // end postordering + + m_analysisIsOk = true; +} + +// Functions needed by the numerical factorization phase + + +/** + * - Numerical factorization + * - Interleaved with the symbolic factorization + * On exit, info is + * + * = 0: successful factorization + * + * > 0: if info = i, and i is + * + * <= A->ncol: U(i,i) is exactly zero. The factorization has + * been completed, but the factor U is exactly singular, + * and division by zero will occur if it is used to solve a + * system of equations. + * + * > A->ncol: number of bytes allocated when memory allocation + * failure occurred, plus A->ncol. If lwork = -1, it is + * the estimated amount of space needed, plus A->ncol. + */ +template <typename MatrixType, typename OrderingType> +void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix) +{ + using internal::emptyIdxLU; + eigen_assert(m_analysisIsOk && "analyzePattern() should be called first"); + eigen_assert((matrix.rows() == matrix.cols()) && "Only for squared matrices"); + + typedef typename IndexVector::Scalar Index; + + + // Apply the column permutation computed in analyzepattern() + // m_mat = matrix * m_perm_c.inverse(); + m_mat = matrix; + if (m_perm_c.size()) + { + m_mat.uncompress(); //NOTE: The effect of this command is only to create the InnerNonzeros pointers. + //Then, permute only the column pointers + const Index * outerIndexPtr; + if (matrix.isCompressed()) outerIndexPtr = matrix.outerIndexPtr(); + else + { + Index* outerIndexPtr_t = new Index[matrix.cols()+1]; + for(Index i = 0; i <= matrix.cols(); i++) outerIndexPtr_t[i] = m_mat.outerIndexPtr()[i]; + outerIndexPtr = outerIndexPtr_t; + } + for (Index i = 0; i < matrix.cols(); i++) + { + m_mat.outerIndexPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i]; + m_mat.innerNonZeroPtr()[m_perm_c.indices()(i)] = outerIndexPtr[i+1] - outerIndexPtr[i]; + } + if(!matrix.isCompressed()) delete[] outerIndexPtr; + } + else + { //FIXME This should not be needed if the empty permutation is handled transparently + m_perm_c.resize(matrix.cols()); + for(Index i = 0; i < matrix.cols(); ++i) m_perm_c.indices()(i) = i; + } + + Index m = m_mat.rows(); + Index n = m_mat.cols(); + Index nnz = m_mat.nonZeros(); + Index maxpanel = m_perfv.panel_size * m; + // Allocate working storage common to the factor routines + Index lwork = 0; + Index info = Base::memInit(m, n, nnz, lwork, m_perfv.fillfactor, m_perfv.panel_size, m_glu); + if (info) + { + m_lastError = "UNABLE TO ALLOCATE WORKING MEMORY\n\n" ; + m_factorizationIsOk = false; + return ; + } + + // Set up pointers for integer working arrays + IndexVector segrep(m); segrep.setZero(); + IndexVector parent(m); parent.setZero(); + IndexVector xplore(m); xplore.setZero(); + IndexVector repfnz(maxpanel); + IndexVector panel_lsub(maxpanel); + IndexVector xprune(n); xprune.setZero(); + IndexVector marker(m*internal::LUNoMarker); marker.setZero(); + + repfnz.setConstant(-1); + panel_lsub.setConstant(-1); + + // Set up pointers for scalar working arrays + ScalarVector dense; + dense.setZero(maxpanel); + ScalarVector tempv; + tempv.setZero(internal::LUnumTempV(m, m_perfv.panel_size, m_perfv.maxsuper, /*m_perfv.rowblk*/m) ); + + // Compute the inverse of perm_c + PermutationType iperm_c(m_perm_c.inverse()); + + // Identify initial relaxed snodes + IndexVector relax_end(n); + if ( m_symmetricmode == true ) + Base::heap_relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); + else + Base::relax_snode(n, m_etree, m_perfv.relax, marker, relax_end); + + + m_perm_r.resize(m); + m_perm_r.indices().setConstant(-1); + marker.setConstant(-1); + m_detPermR = 1; // Record the determinant of the row permutation + + m_glu.supno(0) = emptyIdxLU; m_glu.xsup.setConstant(0); + m_glu.xsup(0) = m_glu.xlsub(0) = m_glu.xusub(0) = m_glu.xlusup(0) = Index(0); + + // Work on one 'panel' at a time. A panel is one of the following : + // (a) a relaxed supernode at the bottom of the etree, or + // (b) panel_size contiguous columns, <panel_size> defined by the user + Index jcol; + IndexVector panel_histo(n); + Index pivrow; // Pivotal row number in the original row matrix + Index nseg1; // Number of segments in U-column above panel row jcol + Index nseg; // Number of segments in each U-column + Index irep; + Index i, k, jj; + for (jcol = 0; jcol < n; ) + { + // Adjust panel size so that a panel won't overlap with the next relaxed snode. + Index panel_size = m_perfv.panel_size; // upper bound on panel width + for (k = jcol + 1; k < (std::min)(jcol+panel_size, n); k++) + { + if (relax_end(k) != emptyIdxLU) + { + panel_size = k - jcol; + break; + } + } + if (k == n) + panel_size = n - jcol; + + // Symbolic outer factorization on a panel of columns + Base::panel_dfs(m, panel_size, jcol, m_mat, m_perm_r.indices(), nseg1, dense, panel_lsub, segrep, repfnz, xprune, marker, parent, xplore, m_glu); + + // Numeric sup-panel updates in topological order + Base::panel_bmod(m, panel_size, jcol, nseg1, dense, tempv, segrep, repfnz, m_glu); + + // Sparse LU within the panel, and below the panel diagonal + for ( jj = jcol; jj< jcol + panel_size; jj++) + { + k = (jj - jcol) * m; // Column index for w-wide arrays + + nseg = nseg1; // begin after all the panel segments + //Depth-first-search for the current column + VectorBlock<IndexVector> panel_lsubk(panel_lsub, k, m); + VectorBlock<IndexVector> repfnz_k(repfnz, k, m); + info = Base::column_dfs(m, jj, m_perm_r.indices(), m_perfv.maxsuper, nseg, panel_lsubk, segrep, repfnz_k, xprune, marker, parent, xplore, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_DFS() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + // Numeric updates to this column + VectorBlock<ScalarVector> dense_k(dense, k, m); + VectorBlock<IndexVector> segrep_k(segrep, nseg1, m-nseg1); + info = Base::column_bmod(jj, (nseg - nseg1), dense_k, tempv, segrep_k, repfnz_k, jcol, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COLUMN_BMOD() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Copy the U-segments to ucol(*) + info = Base::copy_to_ucol(jj, nseg, segrep, repfnz_k ,m_perm_r.indices(), dense_k, m_glu); + if ( info ) + { + m_lastError = "UNABLE TO EXPAND MEMORY IN COPY_TO_UCOL() "; + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Form the L-segment + info = Base::pivotL(jj, m_diagpivotthresh, m_perm_r.indices(), iperm_c.indices(), pivrow, m_glu); + if ( info ) + { + m_lastError = "THE MATRIX IS STRUCTURALLY SINGULAR ... ZERO COLUMN AT "; + std::ostringstream returnInfo; + returnInfo << info; + m_lastError += returnInfo.str(); + m_info = NumericalIssue; + m_factorizationIsOk = false; + return; + } + + // Update the determinant of the row permutation matrix + // FIXME: the following test is not correct, we should probably take iperm_c into account and pivrow is not directly the row pivot. + if (pivrow != jj) m_detPermR = -m_detPermR; + + // Prune columns (0:jj-1) using column jj + Base::pruneL(jj, m_perm_r.indices(), pivrow, nseg, segrep, repfnz_k, xprune, m_glu); + + // Reset repfnz for this column + for (i = 0; i < nseg; i++) + { + irep = segrep(i); + repfnz_k(irep) = emptyIdxLU; + } + } // end SparseLU within the panel + jcol += panel_size; // Move to the next panel + } // end for -- end elimination + + m_detPermR = m_perm_r.determinant(); + m_detPermC = m_perm_c.determinant(); + + // Count the number of nonzeros in factors + Base::countnz(n, m_nnzL, m_nnzU, m_glu); + // Apply permutation to the L subscripts + Base::fixupL(n, m_perm_r.indices(), m_glu); + + // Create supernode matrix L + m_Lstore.setInfos(m, n, m_glu.lusup, m_glu.xlusup, m_glu.lsub, m_glu.xlsub, m_glu.supno, m_glu.xsup); + // Create the column major upper sparse matrix U; + new (&m_Ustore) MappedSparseMatrix<Scalar, ColMajor, Index> ( m, n, m_nnzU, m_glu.xusub.data(), m_glu.usub.data(), m_glu.ucol.data() ); + + m_info = Success; + m_factorizationIsOk = true; +} + +template<typename MappedSupernodalType> +struct SparseLUMatrixLReturnType : internal::no_assignment_operator +{ + typedef typename MappedSupernodalType::Index Index; + typedef typename MappedSupernodalType::Scalar Scalar; + SparseLUMatrixLReturnType(const MappedSupernodalType& mapL) : m_mapL(mapL) + { } + Index rows() { return m_mapL.rows(); } + Index cols() { return m_mapL.cols(); } + template<typename Dest> + void solveInPlace( MatrixBase<Dest> &X) const + { + m_mapL.solveInPlace(X); + } + const MappedSupernodalType& m_mapL; +}; + +template<typename MatrixLType, typename MatrixUType> +struct SparseLUMatrixUReturnType : internal::no_assignment_operator +{ + typedef typename MatrixLType::Index Index; + typedef typename MatrixLType::Scalar Scalar; + SparseLUMatrixUReturnType(const MatrixLType& mapL, const MatrixUType& mapU) + : m_mapL(mapL),m_mapU(mapU) + { } + Index rows() { return m_mapL.rows(); } + Index cols() { return m_mapL.cols(); } + + template<typename Dest> void solveInPlace(MatrixBase<Dest> &X) const + { + Index nrhs = X.cols(); + Index n = X.rows(); + // Backward solve with U + for (Index k = m_mapL.nsuper(); k >= 0; k--) + { + Index fsupc = m_mapL.supToCol()[k]; + Index lda = m_mapL.colIndexPtr()[fsupc+1] - m_mapL.colIndexPtr()[fsupc]; // leading dimension + Index nsupc = m_mapL.supToCol()[k+1] - fsupc; + Index luptr = m_mapL.colIndexPtr()[fsupc]; + + if (nsupc == 1) + { + for (Index j = 0; j < nrhs; j++) + { + X(fsupc, j) /= m_mapL.valuePtr()[luptr]; + } + } + else + { + Map<const Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > A( &(m_mapL.valuePtr()[luptr]), nsupc, nsupc, OuterStride<>(lda) ); + Map< Matrix<Scalar,Dynamic,Dynamic, ColMajor>, 0, OuterStride<> > U (&(X(fsupc,0)), nsupc, nrhs, OuterStride<>(n) ); + U = A.template triangularView<Upper>().solve(U); + } + + for (Index j = 0; j < nrhs; ++j) + { + for (Index jcol = fsupc; jcol < fsupc + nsupc; jcol++) + { + typename MatrixUType::InnerIterator it(m_mapU, jcol); + for ( ; it; ++it) + { + Index irow = it.index(); + X(irow, j) -= X(jcol, j) * it.value(); + } + } + } + } // End For U-solve + } + const MatrixLType& m_mapL; + const MatrixUType& m_mapU; +}; + +namespace internal { + +template<typename _MatrixType, typename Derived, typename Rhs> +struct solve_retval<SparseLU<_MatrixType,Derived>, Rhs> + : solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs> +{ + typedef SparseLU<_MatrixType,Derived> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +template<typename _MatrixType, typename Derived, typename Rhs> +struct sparse_solve_retval<SparseLU<_MatrixType,Derived>, Rhs> + : sparse_solve_retval_base<SparseLU<_MatrixType,Derived>, Rhs> +{ + typedef SparseLU<_MatrixType,Derived> Dec; + EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + this->defaultEvalTo(dst); + } +}; +} // end namespace internal + +} // End namespace Eigen + +#endif |