diff options
Diffstat (limited to 'eigen/bench/bench_gemm.cpp')
-rw-r--r-- | eigen/bench/bench_gemm.cpp | 271 |
1 files changed, 271 insertions, 0 deletions
diff --git a/eigen/bench/bench_gemm.cpp b/eigen/bench/bench_gemm.cpp new file mode 100644 index 0000000..41ca8b3 --- /dev/null +++ b/eigen/bench/bench_gemm.cpp @@ -0,0 +1,271 @@ + +// g++-4.4 bench_gemm.cpp -I .. -O2 -DNDEBUG -lrt -fopenmp && OMP_NUM_THREADS=2 ./a.out +// icpc bench_gemm.cpp -I .. -O3 -DNDEBUG -lrt -openmp && OMP_NUM_THREADS=2 ./a.out + +#include <iostream> +#include <Eigen/Core> +#include <bench/BenchTimer.h> + +using namespace std; +using namespace Eigen; + +#ifndef SCALAR +// #define SCALAR std::complex<float> +#define SCALAR float +#endif + +typedef SCALAR Scalar; +typedef NumTraits<Scalar>::Real RealScalar; +typedef Matrix<RealScalar,Dynamic,Dynamic> A; +typedef Matrix</*Real*/Scalar,Dynamic,Dynamic> B; +typedef Matrix<Scalar,Dynamic,Dynamic> C; +typedef Matrix<RealScalar,Dynamic,Dynamic> M; + +#ifdef HAVE_BLAS + +extern "C" { + #include <Eigen/src/misc/blas.h> +} + +static float fone = 1; +static float fzero = 0; +static double done = 1; +static double szero = 0; +static std::complex<float> cfone = 1; +static std::complex<float> cfzero = 0; +static std::complex<double> cdone = 1; +static std::complex<double> cdzero = 0; +static char notrans = 'N'; +static char trans = 'T'; +static char nonunit = 'N'; +static char lower = 'L'; +static char right = 'R'; +static int intone = 1; + +void blas_gemm(const MatrixXf& a, const MatrixXf& b, MatrixXf& c) +{ + int M = c.rows(); int N = c.cols(); int K = a.cols(); + int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); + + sgemm_(¬rans,¬rans,&M,&N,&K,&fone, + const_cast<float*>(a.data()),&lda, + const_cast<float*>(b.data()),&ldb,&fone, + c.data(),&ldc); +} + +EIGEN_DONT_INLINE void blas_gemm(const MatrixXd& a, const MatrixXd& b, MatrixXd& c) +{ + int M = c.rows(); int N = c.cols(); int K = a.cols(); + int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); + + dgemm_(¬rans,¬rans,&M,&N,&K,&done, + const_cast<double*>(a.data()),&lda, + const_cast<double*>(b.data()),&ldb,&done, + c.data(),&ldc); +} + +void blas_gemm(const MatrixXcf& a, const MatrixXcf& b, MatrixXcf& c) +{ + int M = c.rows(); int N = c.cols(); int K = a.cols(); + int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); + + cgemm_(¬rans,¬rans,&M,&N,&K,(float*)&cfone, + const_cast<float*>((const float*)a.data()),&lda, + const_cast<float*>((const float*)b.data()),&ldb,(float*)&cfone, + (float*)c.data(),&ldc); +} + +void blas_gemm(const MatrixXcd& a, const MatrixXcd& b, MatrixXcd& c) +{ + int M = c.rows(); int N = c.cols(); int K = a.cols(); + int lda = a.rows(); int ldb = b.rows(); int ldc = c.rows(); + + zgemm_(¬rans,¬rans,&M,&N,&K,(double*)&cdone, + const_cast<double*>((const double*)a.data()),&lda, + const_cast<double*>((const double*)b.data()),&ldb,(double*)&cdone, + (double*)c.data(),&ldc); +} + + + +#endif + +void matlab_cplx_cplx(const M& ar, const M& ai, const M& br, const M& bi, M& cr, M& ci) +{ + cr.noalias() += ar * br; + cr.noalias() -= ai * bi; + ci.noalias() += ar * bi; + ci.noalias() += ai * br; +} + +void matlab_real_cplx(const M& a, const M& br, const M& bi, M& cr, M& ci) +{ + cr.noalias() += a * br; + ci.noalias() += a * bi; +} + +void matlab_cplx_real(const M& ar, const M& ai, const M& b, M& cr, M& ci) +{ + cr.noalias() += ar * b; + ci.noalias() += ai * b; +} + +template<typename A, typename B, typename C> +EIGEN_DONT_INLINE void gemm(const A& a, const B& b, C& c) +{ + c.noalias() += a * b; +} + +int main(int argc, char ** argv) +{ + std::ptrdiff_t l1 = internal::queryL1CacheSize(); + std::ptrdiff_t l2 = internal::queryTopLevelCacheSize(); + std::cout << "L1 cache size = " << (l1>0 ? l1/1024 : -1) << " KB\n"; + std::cout << "L2/L3 cache size = " << (l2>0 ? l2/1024 : -1) << " KB\n"; + typedef internal::gebp_traits<Scalar,Scalar> Traits; + std::cout << "Register blocking = " << Traits::mr << " x " << Traits::nr << "\n"; + + int rep = 1; // number of repetitions per try + int tries = 2; // number of tries, we keep the best + + int s = 2048; + int cache_size = -1; + + bool need_help = false; + for (int i=1; i<argc; ++i) + { + if(argv[i][0]=='s') + s = atoi(argv[i]+1); + else if(argv[i][0]=='c') + cache_size = atoi(argv[i]+1); + else if(argv[i][0]=='t') + tries = atoi(argv[i]+1); + else if(argv[i][0]=='p') + rep = atoi(argv[i]+1); + else + need_help = true; + } + + if(need_help) + { + std::cout << argv[0] << " s<matrix size> c<cache size> t<nb tries> p<nb repeats>\n"; + return 1; + } + + if(cache_size>0) + setCpuCacheSizes(cache_size,96*cache_size); + + int m = s; + int n = s; + int p = s; + A a(m,p); a.setRandom(); + B b(p,n); b.setRandom(); + C c(m,n); c.setOnes(); + C rc = c; + + std::cout << "Matrix sizes = " << m << "x" << p << " * " << p << "x" << n << "\n"; + std::ptrdiff_t mc(m), nc(n), kc(p); + internal::computeProductBlockingSizes<Scalar,Scalar>(kc, mc, nc); + std::cout << "blocking size (mc x kc) = " << mc << " x " << kc << "\n"; + + C r = c; + + // check the parallel product is correct + #if defined EIGEN_HAS_OPENMP + int procs = omp_get_max_threads(); + if(procs>1) + { + #ifdef HAVE_BLAS + blas_gemm(a,b,r); + #else + omp_set_num_threads(1); + r.noalias() += a * b; + omp_set_num_threads(procs); + #endif + c.noalias() += a * b; + if(!r.isApprox(c)) std::cerr << "Warning, your parallel product is crap!\n\n"; + } + #elif defined HAVE_BLAS + blas_gemm(a,b,r); + c.noalias() += a * b; + if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; + #else + gemm(a,b,c); + r.noalias() += a.cast<Scalar>() * b.cast<Scalar>(); + if(!r.isApprox(c)) std::cerr << "Warning, your product is crap!\n\n"; + #endif + + #ifdef HAVE_BLAS + BenchTimer tblas; + c = rc; + BENCH(tblas, tries, rep, blas_gemm(a,b,c)); + std::cout << "blas cpu " << tblas.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(CPU_TIMER) << "s)\n"; + std::cout << "blas real " << tblas.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tblas.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tblas.total(REAL_TIMER) << "s)\n"; + #endif + + BenchTimer tmt; + c = rc; + BENCH(tmt, tries, rep, gemm(a,b,c)); + std::cout << "eigen cpu " << tmt.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(CPU_TIMER) << "s)\n"; + std::cout << "eigen real " << tmt.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmt.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmt.total(REAL_TIMER) << "s)\n"; + + #ifdef EIGEN_HAS_OPENMP + if(procs>1) + { + BenchTimer tmono; + omp_set_num_threads(1); + Eigen::internal::setNbThreads(1); + c = rc; + BENCH(tmono, tries, rep, gemm(a,b,c)); + std::cout << "eigen mono cpu " << tmono.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(CPU_TIMER) << "s)\n"; + std::cout << "eigen mono real " << tmono.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/tmono.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << tmono.total(REAL_TIMER) << "s)\n"; + std::cout << "mt speed up x" << tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER) << " => " << (100.0*tmono.best(CPU_TIMER) / tmt.best(REAL_TIMER))/procs << "%\n"; + } + #endif + + #ifdef DECOUPLED + if((NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) + { + M ar(m,p); ar.setRandom(); + M ai(m,p); ai.setRandom(); + M br(p,n); br.setRandom(); + M bi(p,n); bi.setRandom(); + M cr(m,n); cr.setRandom(); + M ci(m,n); ci.setRandom(); + + BenchTimer t; + BENCH(t, tries, rep, matlab_cplx_cplx(ar,ai,br,bi,cr,ci)); + std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; + std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; + } + if((!NumTraits<A::Scalar>::IsComplex) && (NumTraits<B::Scalar>::IsComplex)) + { + M a(m,p); a.setRandom(); + M br(p,n); br.setRandom(); + M bi(p,n); bi.setRandom(); + M cr(m,n); cr.setRandom(); + M ci(m,n); ci.setRandom(); + + BenchTimer t; + BENCH(t, tries, rep, matlab_real_cplx(a,br,bi,cr,ci)); + std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; + std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; + } + if((NumTraits<A::Scalar>::IsComplex) && (!NumTraits<B::Scalar>::IsComplex)) + { + M ar(m,p); ar.setRandom(); + M ai(m,p); ai.setRandom(); + M b(p,n); b.setRandom(); + M cr(m,n); cr.setRandom(); + M ci(m,n); ci.setRandom(); + + BenchTimer t; + BENCH(t, tries, rep, matlab_cplx_real(ar,ai,b,cr,ci)); + std::cout << "\"matlab\" cpu " << t.best(CPU_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(CPU_TIMER))*1e-9 << " GFLOPS \t(" << t.total(CPU_TIMER) << "s)\n"; + std::cout << "\"matlab\" real " << t.best(REAL_TIMER)/rep << "s \t" << (double(m)*n*p*rep*2/t.best(REAL_TIMER))*1e-9 << " GFLOPS \t(" << t.total(REAL_TIMER) << "s)\n"; + } + #endif + + return 0; +} + |