diff options
Diffstat (limited to 'eigen/bench/bench_norm.cpp')
-rw-r--r-- | eigen/bench/bench_norm.cpp | 345 |
1 files changed, 345 insertions, 0 deletions
diff --git a/eigen/bench/bench_norm.cpp b/eigen/bench/bench_norm.cpp new file mode 100644 index 0000000..806db29 --- /dev/null +++ b/eigen/bench/bench_norm.cpp @@ -0,0 +1,345 @@ +#include <typeinfo> +#include <iostream> +#include <Eigen/Core> +#include "BenchTimer.h" +using namespace Eigen; +using namespace std; + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar sqsumNorm(const T& v) +{ + return v.norm(); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar hypotNorm(const T& v) +{ + return v.hypotNorm(); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar blueNorm(const T& v) +{ + return v.blueNorm(); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v) +{ + typedef typename T::Scalar Scalar; + int n = v.size(); + Scalar scale = 0; + Scalar ssq = 1; + for (int i=0;i<n;++i) + { + Scalar ax = internal::abs(v.coeff(i)); + if (scale >= ax) + { + ssq += internal::abs2(ax/scale); + } + else + { + ssq = Scalar(1) + ssq * internal::abs2(scale/ax); + scale = ax; + } + } + return scale * internal::sqrt(ssq); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v) +{ + typedef typename T::Scalar Scalar; + Scalar s = v.cwise().abs().maxCoeff(); + return s*(v/s).norm(); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v) +{ + return v.stableNorm(); +} + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v) +{ + int n =v.size() / 2; + for (int i=0;i<n;++i) + v(i) = v(2*i)*v(2*i) + v(2*i+1)*v(2*i+1); + n = n/2; + while (n>0) + { + for (int i=0;i<n;++i) + v(i) = v(2*i) + v(2*i+1); + n = n/2; + } + return internal::sqrt(v(0)); +} + +#ifdef EIGEN_VECTORIZE +Packet4f internal::plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); } +Packet2d internal::plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); } + +Packet4f internal::pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); } +Packet2d internal::pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); } +#endif + +template<typename T> +EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v) +{ + #ifndef EIGEN_VECTORIZE + return v.blueNorm(); + #else + typedef typename T::Scalar Scalar; + + static int nmax = 0; + static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr; + int n; + + if(nmax <= 0) + { + int nbig, ibeta, it, iemin, iemax, iexp; + Scalar abig, eps; + + nbig = std::numeric_limits<int>::max(); // largest integer + ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers + it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa + iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent + iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent + rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number + + // Check the basic machine-dependent constants. + if(iemin > 1 - 2*it || 1+it>iemax || (it==2 && ibeta<5) + || (it<=4 && ibeta <= 3 ) || it<2) + { + eigen_assert(false && "the algorithm cannot be guaranteed on this computer"); + } + iexp = -((1-iemin)/2); + b1 = std::pow(ibeta, iexp); // lower boundary of midrange + iexp = (iemax + 1 - it)/2; + b2 = std::pow(ibeta,iexp); // upper boundary of midrange + + iexp = (2-iemin)/2; + s1m = std::pow(ibeta,iexp); // scaling factor for lower range + iexp = - ((iemax+it)/2); + s2m = std::pow(ibeta,iexp); // scaling factor for upper range + + overfl = rbig*s2m; // overfow boundary for abig + eps = std::pow(ibeta, 1-it); + relerr = internal::sqrt(eps); // tolerance for neglecting asml + abig = 1.0/eps - 1.0; + if (Scalar(nbig)>abig) nmax = abig; // largest safe n + else nmax = nbig; + } + + typedef typename internal::packet_traits<Scalar>::type Packet; + const int ps = internal::packet_traits<Scalar>::size; + Packet pasml = internal::pset1(Scalar(0)); + Packet pamed = internal::pset1(Scalar(0)); + Packet pabig = internal::pset1(Scalar(0)); + Packet ps2m = internal::pset1(s2m); + Packet ps1m = internal::pset1(s1m); + Packet pb2 = internal::pset1(b2); + Packet pb1 = internal::pset1(b1); + for(int j=0; j<v.size(); j+=ps) + { + Packet ax = internal::pabs(v.template packet<Aligned>(j)); + Packet ax_s2m = internal::pmul(ax,ps2m); + Packet ax_s1m = internal::pmul(ax,ps1m); + Packet maskBig = internal::plt(pb2,ax); + Packet maskSml = internal::plt(ax,pb1); + +// Packet maskMed = internal::pand(maskSml,maskBig); +// Packet scale = internal::pset1(Scalar(0)); +// scale = internal::por(scale, internal::pand(maskBig,ps2m)); +// scale = internal::por(scale, internal::pand(maskSml,ps1m)); +// scale = internal::por(scale, internal::pandnot(internal::pset1(Scalar(1)),maskMed)); +// ax = internal::pmul(ax,scale); +// ax = internal::pmul(ax,ax); +// pabig = internal::padd(pabig, internal::pand(maskBig, ax)); +// pasml = internal::padd(pasml, internal::pand(maskSml, ax)); +// pamed = internal::padd(pamed, internal::pandnot(ax,maskMed)); + + + pabig = internal::padd(pabig, internal::pand(maskBig, internal::pmul(ax_s2m,ax_s2m))); + pasml = internal::padd(pasml, internal::pand(maskSml, internal::pmul(ax_s1m,ax_s1m))); + pamed = internal::padd(pamed, internal::pandnot(internal::pmul(ax,ax),internal::pand(maskSml,maskBig))); + } + Scalar abig = internal::predux(pabig); + Scalar asml = internal::predux(pasml); + Scalar amed = internal::predux(pamed); + if(abig > Scalar(0)) + { + abig = internal::sqrt(abig); + if(abig > overfl) + { + eigen_assert(false && "overflow"); + return rbig; + } + if(amed > Scalar(0)) + { + abig = abig/s2m; + amed = internal::sqrt(amed); + } + else + { + return abig/s2m; + } + + } + else if(asml > Scalar(0)) + { + if (amed > Scalar(0)) + { + abig = internal::sqrt(amed); + amed = internal::sqrt(asml) / s1m; + } + else + { + return internal::sqrt(asml)/s1m; + } + } + else + { + return internal::sqrt(amed); + } + asml = std::min(abig, amed); + abig = std::max(abig, amed); + if(asml <= abig*relerr) + return abig; + else + return abig * internal::sqrt(Scalar(1) + internal::abs2(asml/abig)); + #endif +} + +#define BENCH_PERF(NRM) { \ + Eigen::BenchTimer tf, td, tcf; tf.reset(); td.reset(); tcf.reset();\ + for (int k=0; k<tries; ++k) { \ + tf.start(); \ + for (int i=0; i<iters; ++i) NRM(vf); \ + tf.stop(); \ + } \ + for (int k=0; k<tries; ++k) { \ + td.start(); \ + for (int i=0; i<iters; ++i) NRM(vd); \ + td.stop(); \ + } \ + for (int k=0; k<std::max(1,tries/3); ++k) { \ + tcf.start(); \ + for (int i=0; i<iters; ++i) NRM(vcf); \ + tcf.stop(); \ + } \ + std::cout << #NRM << "\t" << tf.value() << " " << td.value() << " " << tcf.value() << "\n"; \ +} + +void check_accuracy(double basef, double based, int s) +{ + double yf = basef * internal::abs(internal::random<double>()); + double yd = based * internal::abs(internal::random<double>()); + VectorXf vf = VectorXf::Ones(s) * yf; + VectorXd vd = VectorXd::Ones(s) * yd; + + std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; + std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n"; + std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n"; + std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n"; + std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n"; + std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n"; + std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n"; + std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n"; +} + +void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s) +{ + VectorXf vf(s); + VectorXd vd(s); + for (int i=0; i<s; ++i) + { + vf[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ef0,ef1)); + vd[i] = internal::abs(internal::random<double>()) * std::pow(double(10), internal::random<int>(ed0,ed1)); + } + + //std::cout << "reference\t" << internal::sqrt(double(s))*yf << "\t" << internal::sqrt(double(s))*yd << "\n"; + std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n"; + std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n"; + std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; + std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n"; + std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n"; + std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n"; +// std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n"; +} + +int main(int argc, char** argv) +{ + int tries = 10; + int iters = 100000; + double y = 1.1345743233455785456788e12 * internal::random<double>(); + VectorXf v = VectorXf::Ones(1024) * y; + +// return 0; + int s = 10000; + double basef_ok = 1.1345743233455785456788e15; + double based_ok = 1.1345743233455785456788e95; + + double basef_under = 1.1345743233455785456788e-27; + double based_under = 1.1345743233455785456788e-303; + + double basef_over = 1.1345743233455785456788e+27; + double based_over = 1.1345743233455785456788e+302; + + std::cout.precision(20); + + std::cerr << "\nNo under/overflow:\n"; + check_accuracy(basef_ok, based_ok, s); + + std::cerr << "\nUnderflow:\n"; + check_accuracy(basef_under, based_under, s); + + std::cerr << "\nOverflow:\n"; + check_accuracy(basef_over, based_over, s); + + std::cerr << "\nVarying (over):\n"; + for (int k=0; k<1; ++k) + { + check_accuracy_var(20,27,190,302,s); + std::cout << "\n"; + } + + std::cerr << "\nVarying (under):\n"; + for (int k=0; k<1; ++k) + { + check_accuracy_var(-27,20,-302,-190,s); + std::cout << "\n"; + } + + std::cout.precision(4); + std::cerr << "Performance (out of cache):\n"; + { + int iters = 1; + VectorXf vf = VectorXf::Random(1024*1024*32) * y; + VectorXd vd = VectorXd::Random(1024*1024*32) * y; + VectorXcf vcf = VectorXcf::Random(1024*1024*32) * y; + BENCH_PERF(sqsumNorm); + BENCH_PERF(blueNorm); +// BENCH_PERF(pblueNorm); +// BENCH_PERF(lapackNorm); +// BENCH_PERF(hypotNorm); +// BENCH_PERF(twopassNorm); + BENCH_PERF(bl2passNorm); + } + + std::cerr << "\nPerformance (in cache):\n"; + { + int iters = 100000; + VectorXf vf = VectorXf::Random(512) * y; + VectorXd vd = VectorXd::Random(512) * y; + VectorXcf vcf = VectorXcf::Random(512) * y; + BENCH_PERF(sqsumNorm); + BENCH_PERF(blueNorm); +// BENCH_PERF(pblueNorm); +// BENCH_PERF(lapackNorm); +// BENCH_PERF(hypotNorm); +// BENCH_PERF(twopassNorm); + BENCH_PERF(bl2passNorm); + } +} |