diff options
Diffstat (limited to 'eigen/blas/level2_cplx_impl.h')
-rw-r--r-- | eigen/blas/level2_cplx_impl.h | 394 |
1 files changed, 394 insertions, 0 deletions
diff --git a/eigen/blas/level2_cplx_impl.h b/eigen/blas/level2_cplx_impl.h new file mode 100644 index 0000000..b850b6c --- /dev/null +++ b/eigen/blas/level2_cplx_impl.h @@ -0,0 +1,394 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +/** ZHEMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) +{ + typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar); + static functype func[2]; + + static bool init = false; + if(!init) + { + for(int k=0; k<2; ++k) + func[k] = 0; + + func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run); + func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run); + + init = true; + } + + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + Scalar beta = *reinterpret_cast<Scalar*>(pbeta); + + // check arguments + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*lda<std::max(1,*n)) info = 5; + else if(*incx==0) info = 7; + else if(*incy==0) info = 10; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6); + + if(*n==0) + return 1; + + Scalar* actual_x = get_compact_vector(x,*n,*incx); + Scalar* actual_y = get_compact_vector(y,*n,*incy); + + if(beta!=Scalar(1)) + { + if(beta==Scalar(0)) vector(actual_y, *n).setZero(); + else vector(actual_y, *n) *= beta; + } + + if(alpha!=Scalar(0)) + { + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, actual_x, 1, actual_y, alpha); + } + + if(actual_x!=x) delete[] actual_x; + if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy); + + return 1; +} + +/** ZHBMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian band matrix, with k super-diagonals. + */ +// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda, +// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + +/** ZHPMV performs the matrix-vector operation + * + * y := alpha*A*x + beta*y, + * + * where alpha and beta are scalars, x and y are n element vectors and + * A is an n by n hermitian matrix, supplied in packed form. + */ +// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy) +// { +// return 1; +// } + +/** ZHPR performs the hermitian rank 1 operation + * + * A := alpha*x*conjg( x' ) + A, + * + * where alpha is a real scalar, x is an n element vector and A is an + * n by n hermitian matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar); + static functype func[2]; + + static bool init = false; + if(!init) + { + for(int k=0; k<2; ++k) + func[k] = 0; + + func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); + func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); + + init = true; + } + + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* ap = reinterpret_cast<Scalar*>(pap); + RealScalar alpha = *palpha; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +/** ZHPR2 performs the hermitian rank 2 operation + * + * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + * + * where alpha is a scalar, x and y are n element vectors and A is an + * n by n hermitian matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap) +{ + typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar); + static functype func[2]; + + static bool init = false; + if(!init) + { + for(int k=0; k<2; ++k) + func[k] = 0; + + func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run); + func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run); + + init = true; + } + + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar* ap = reinterpret_cast<Scalar*>(pap); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + Scalar* y_cpy = get_compact_vector(y, *n, *incy); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, ap, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZHER performs the hermitian rank 1 operation + * + * A := alpha*x*conjg( x' ) + A, + * + * where alpha is a real scalar, x is an n element vector and A is an + * n by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda) +{ + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&); + static functype func[2]; + + static bool init = false; + if(!init) + { + for(int k=0; k<2; ++k) + func[k] = 0; + + func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run); + func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run); + + init = true; + } + + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* a = reinterpret_cast<Scalar*>(pa); + RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*lda<std::max(1,*n)) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6); + + if(alpha==RealScalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, x_cpy, x_cpy, alpha); + + matrix(a,*n,*n,*lda).diagonal().imag().setZero(); + + if(x_cpy!=x) delete[] x_cpy; + + return 1; +} + +/** ZHER2 performs the hermitian rank 2 operation + * + * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, + * + * where alpha is a scalar, x and y are n element vectors and A is an n + * by n hermitian matrix. + */ +int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar); + static functype func[2]; + + static bool init = false; + if(!init) + { + for(int k=0; k<2; ++k) + func[k] = 0; + + func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run); + func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run); + + init = true; + } + + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda<std::max(1,*n)) info = 9; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x, *n, *incx); + Scalar* y_cpy = get_compact_vector(y, *n, *incy); + + int code = UPLO(*uplo); + if(code>=2 || func[code]==0) + return 0; + + func[code](*n, a, *lda, x_cpy, y_cpy, alpha); + + matrix(a,*n,*n,*lda).diagonal().imag().setZero(); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZGERU performs the rank 1 operation + * + * A := alpha*x*y' + A, + * + * where alpha is a scalar, x is an m element vector, y is an n element + * vector and A is an m by n matrix. + */ +int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + + int info = 0; + if(*m<0) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda<std::max(1,*m)) info = 9; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x,*m,*incx); + Scalar* y_cpy = get_compact_vector(y,*n,*incy); + + internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} + +/** ZGERC performs the rank 1 operation + * + * A := alpha*x*conjg( y' ) + A, + * + * where alpha is a scalar, x is an m element vector, y is an n element + * vector and A is an m by n matrix. + */ +int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda) +{ + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + + int info = 0; + if(*m<0) info = 1; + else if(*n<0) info = 2; + else if(*incx==0) info = 5; + else if(*incy==0) info = 7; + else if(*lda<std::max(1,*m)) info = 9; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6); + + if(alpha==Scalar(0)) + return 1; + + Scalar* x_cpy = get_compact_vector(x,*m,*incx); + Scalar* y_cpy = get_compact_vector(y,*n,*incy); + + internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha); + + if(x_cpy!=x) delete[] x_cpy; + if(y_cpy!=y) delete[] y_cpy; + + return 1; +} |