summaryrefslogtreecommitdiffhomepage
path: root/eigen/blas/level2_cplx_impl.h
diff options
context:
space:
mode:
Diffstat (limited to 'eigen/blas/level2_cplx_impl.h')
-rw-r--r--eigen/blas/level2_cplx_impl.h394
1 files changed, 394 insertions, 0 deletions
diff --git a/eigen/blas/level2_cplx_impl.h b/eigen/blas/level2_cplx_impl.h
new file mode 100644
index 0000000..b850b6c
--- /dev/null
+++ b/eigen/blas/level2_cplx_impl.h
@@ -0,0 +1,394 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "common.h"
+
+/** ZHEMV performs the matrix-vector operation
+ *
+ * y := alpha*A*x + beta*y,
+ *
+ * where alpha and beta are scalars, x and y are n element vectors and
+ * A is an n by n hermitian matrix.
+ */
+int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
+{
+ typedef void (*functype)(int, const Scalar*, int, const Scalar*, int, Scalar*, Scalar);
+ static functype func[2];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<2; ++k)
+ func[k] = 0;
+
+ func[UP] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run);
+ func[LO] = (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run);
+
+ init = true;
+ }
+
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+ Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
+
+ // check arguments
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(*n<0) info = 2;
+ else if(*lda<std::max(1,*n)) info = 5;
+ else if(*incx==0) info = 7;
+ else if(*incy==0) info = 10;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
+
+ if(*n==0)
+ return 1;
+
+ Scalar* actual_x = get_compact_vector(x,*n,*incx);
+ Scalar* actual_y = get_compact_vector(y,*n,*incy);
+
+ if(beta!=Scalar(1))
+ {
+ if(beta==Scalar(0)) vector(actual_y, *n).setZero();
+ else vector(actual_y, *n) *= beta;
+ }
+
+ if(alpha!=Scalar(0))
+ {
+ int code = UPLO(*uplo);
+ if(code>=2 || func[code]==0)
+ return 0;
+
+ func[code](*n, a, *lda, actual_x, 1, actual_y, alpha);
+ }
+
+ if(actual_x!=x) delete[] actual_x;
+ if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
+
+ return 1;
+}
+
+/** ZHBMV performs the matrix-vector operation
+ *
+ * y := alpha*A*x + beta*y,
+ *
+ * where alpha and beta are scalars, x and y are n element vectors and
+ * A is an n by n hermitian band matrix, with k super-diagonals.
+ */
+// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
+// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
+// {
+// return 1;
+// }
+
+/** ZHPMV performs the matrix-vector operation
+ *
+ * y := alpha*A*x + beta*y,
+ *
+ * where alpha and beta are scalars, x and y are n element vectors and
+ * A is an n by n hermitian matrix, supplied in packed form.
+ */
+// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
+// {
+// return 1;
+// }
+
+/** ZHPR performs the hermitian rank 1 operation
+ *
+ * A := alpha*x*conjg( x' ) + A,
+ *
+ * where alpha is a real scalar, x is an n element vector and A is an
+ * n by n hermitian matrix, supplied in packed form.
+ */
+int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
+{
+ typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
+ static functype func[2];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<2; ++k)
+ func[k] = 0;
+
+ func[UP] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
+ func[LO] = (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
+
+ init = true;
+ }
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* ap = reinterpret_cast<Scalar*>(pap);
+ RealScalar alpha = *palpha;
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+
+ int code = UPLO(*uplo);
+ if(code>=2 || func[code]==0)
+ return 0;
+
+ func[code](*n, ap, x_cpy, alpha);
+
+ if(x_cpy!=x) delete[] x_cpy;
+
+ return 1;
+}
+
+/** ZHPR2 performs the hermitian rank 2 operation
+ *
+ * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+ *
+ * where alpha is a scalar, x and y are n element vectors and A is an
+ * n by n hermitian matrix, supplied in packed form.
+ */
+int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
+{
+ typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
+ static functype func[2];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<2; ++k)
+ func[k] = 0;
+
+ func[UP] = (internal::packed_rank2_update_selector<Scalar,int,Upper>::run);
+ func[LO] = (internal::packed_rank2_update_selector<Scalar,int,Lower>::run);
+
+ init = true;
+ }
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* ap = reinterpret_cast<Scalar*>(pap);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*incy==0) info = 7;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+ Scalar* y_cpy = get_compact_vector(y, *n, *incy);
+
+ int code = UPLO(*uplo);
+ if(code>=2 || func[code]==0)
+ return 0;
+
+ func[code](*n, ap, x_cpy, y_cpy, alpha);
+
+ if(x_cpy!=x) delete[] x_cpy;
+ if(y_cpy!=y) delete[] y_cpy;
+
+ return 1;
+}
+
+/** ZHER performs the hermitian rank 1 operation
+ *
+ * A := alpha*x*conjg( x' ) + A,
+ *
+ * where alpha is a real scalar, x is an n element vector and A is an
+ * n by n hermitian matrix.
+ */
+int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
+{
+ typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
+ static functype func[2];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<2; ++k)
+ func[k] = 0;
+
+ func[UP] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run);
+ func[LO] = (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run);
+
+ init = true;
+ }
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*lda<std::max(1,*n)) info = 7;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
+
+ if(alpha==RealScalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+
+ int code = UPLO(*uplo);
+ if(code>=2 || func[code]==0)
+ return 0;
+
+ func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
+
+ matrix(a,*n,*n,*lda).diagonal().imag().setZero();
+
+ if(x_cpy!=x) delete[] x_cpy;
+
+ return 1;
+}
+
+/** ZHER2 performs the hermitian rank 2 operation
+ *
+ * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
+ *
+ * where alpha is a scalar, x and y are n element vectors and A is an n
+ * by n hermitian matrix.
+ */
+int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
+{
+ typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
+ static functype func[2];
+
+ static bool init = false;
+ if(!init)
+ {
+ for(int k=0; k<2; ++k)
+ func[k] = 0;
+
+ func[UP] = (internal::rank2_update_selector<Scalar,int,Upper>::run);
+ func[LO] = (internal::rank2_update_selector<Scalar,int,Lower>::run);
+
+ init = true;
+ }
+
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+ int info = 0;
+ if(UPLO(*uplo)==INVALID) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*incy==0) info = 7;
+ else if(*lda<std::max(1,*n)) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x, *n, *incx);
+ Scalar* y_cpy = get_compact_vector(y, *n, *incy);
+
+ int code = UPLO(*uplo);
+ if(code>=2 || func[code]==0)
+ return 0;
+
+ func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
+
+ matrix(a,*n,*n,*lda).diagonal().imag().setZero();
+
+ if(x_cpy!=x) delete[] x_cpy;
+ if(y_cpy!=y) delete[] y_cpy;
+
+ return 1;
+}
+
+/** ZGERU performs the rank 1 operation
+ *
+ * A := alpha*x*y' + A,
+ *
+ * where alpha is a scalar, x is an m element vector, y is an n element
+ * vector and A is an m by n matrix.
+ */
+int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
+{
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+ int info = 0;
+ if(*m<0) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*incy==0) info = 7;
+ else if(*lda<std::max(1,*m)) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x,*m,*incx);
+ Scalar* y_cpy = get_compact_vector(y,*n,*incy);
+
+ internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
+
+ if(x_cpy!=x) delete[] x_cpy;
+ if(y_cpy!=y) delete[] y_cpy;
+
+ return 1;
+}
+
+/** ZGERC performs the rank 1 operation
+ *
+ * A := alpha*x*conjg( y' ) + A,
+ *
+ * where alpha is a scalar, x is an m element vector, y is an n element
+ * vector and A is an m by n matrix.
+ */
+int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
+{
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+
+ int info = 0;
+ if(*m<0) info = 1;
+ else if(*n<0) info = 2;
+ else if(*incx==0) info = 5;
+ else if(*incy==0) info = 7;
+ else if(*lda<std::max(1,*m)) info = 9;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
+
+ if(alpha==Scalar(0))
+ return 1;
+
+ Scalar* x_cpy = get_compact_vector(x,*m,*incx);
+ Scalar* y_cpy = get_compact_vector(y,*n,*incy);
+
+ internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
+
+ if(x_cpy!=x) delete[] x_cpy;
+ if(y_cpy!=y) delete[] y_cpy;
+
+ return 1;
+}