diff options
Diffstat (limited to 'eigen/blas/level2_impl.h')
-rw-r--r-- | eigen/blas/level2_impl.h | 524 |
1 files changed, 524 insertions, 0 deletions
diff --git a/eigen/blas/level2_impl.h b/eigen/blas/level2_impl.h new file mode 100644 index 0000000..5f39419 --- /dev/null +++ b/eigen/blas/level2_impl.h @@ -0,0 +1,524 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#include "common.h" + +int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *pb, int *incb, RealScalar *pbeta, RealScalar *pc, int *incc) +{ + typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int , Scalar *, int, Scalar); + static functype func[4]; + + static bool init = false; + if(!init) + { + for(int k=0; k<4; ++k) + func[k] = 0; + + func[NOTR] = (internal::general_matrix_vector_product<int,Scalar,ColMajor,false,Scalar,false>::run); + func[TR ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,false,Scalar,false>::run); + func[ADJ ] = (internal::general_matrix_vector_product<int,Scalar,RowMajor,Conj, Scalar,false>::run); + + init = true; + } + + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* b = reinterpret_cast<Scalar*>(pb); + Scalar* c = reinterpret_cast<Scalar*>(pc); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + Scalar beta = *reinterpret_cast<Scalar*>(pbeta); + + // check arguments + int info = 0; + if(OP(*opa)==INVALID) info = 1; + else if(*m<0) info = 2; + else if(*n<0) info = 3; + else if(*lda<std::max(1,*m)) info = 6; + else if(*incb==0) info = 8; + else if(*incc==0) info = 11; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6); + + if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) + return 0; + + int actual_m = *m; + int actual_n = *n; + int code = OP(*opa); + if(code!=NOTR) + std::swap(actual_m,actual_n); + + Scalar* actual_b = get_compact_vector(b,actual_n,*incb); + Scalar* actual_c = get_compact_vector(c,actual_m,*incc); + + if(beta!=Scalar(1)) + { + if(beta==Scalar(0)) vector(actual_c, actual_m).setZero(); + else vector(actual_c, actual_m) *= beta; + } + + if(code>=4 || func[code]==0) + return 0; + + func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha); + + if(actual_b!=b) delete[] actual_b; + if(actual_c!=c) delete[] copy_back(actual_c,c,actual_m,*incc); + + return 1; +} + +int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) +{ + typedef void (*functype)(int, const Scalar *, int, Scalar *); + static functype func[16]; + + static bool init = false; + if(!init) + { + for(int k=0; k<16; ++k) + func[k] = 0; + + func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); + func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); + func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run); + + func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); + func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); + func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run); + + func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); + func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); + func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); + + func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); + func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); + func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); + + init = true; + } + + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* b = reinterpret_cast<Scalar*>(pb); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*lda<std::max(1,*n)) info = 6; + else if(*incb==0) info = 8; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TRSV ",&info,6); + + Scalar* actual_b = get_compact_vector(b,*n,*incb); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + func[code](*n, a, *lda, actual_b); + + if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb); + + return 0; +} + + + +int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pa, int *lda, RealScalar *pb, int *incb) +{ + typedef void (*functype)(int, int, const Scalar *, int, const Scalar *, int, Scalar *, int, const Scalar&); + static functype func[16]; + + static bool init = false; + if(!init) + { + for(int k=0; k<16; ++k) + func[k] = 0; + + func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); + + init = true; + } + + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* b = reinterpret_cast<Scalar*>(pb); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*lda<std::max(1,*n)) info = 6; + else if(*incb==0) info = 8; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TRMV ",&info,6); + + if(*n==0) + return 1; + + Scalar* actual_b = get_compact_vector(b,*n,*incb); + Matrix<Scalar,Dynamic,1> res(*n); + res.setZero(); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + if(code>=16 || func[code]==0) + return 0; + + func[code](*n, *n, a, *lda, actual_b, 1, res.data(), 1, Scalar(1)); + + copy_back(res.data(),b,*n,*incb); + if(actual_b!=b) delete[] actual_b; + + return 1; +} + +/** GBMV performs one of the matrix-vector operations + * + * y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, + * + * where alpha and beta are scalars, x and y are vectors and A is an + * m by n band matrix, with kl sub-diagonals and ku super-diagonals. + */ +int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda, + RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy) +{ + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* x = reinterpret_cast<Scalar*>(px); + Scalar* y = reinterpret_cast<Scalar*>(py); + Scalar alpha = *reinterpret_cast<Scalar*>(palpha); + Scalar beta = *reinterpret_cast<Scalar*>(pbeta); + int coeff_rows = *kl+*ku+1; + + int info = 0; + if(OP(*trans)==INVALID) info = 1; + else if(*m<0) info = 2; + else if(*n<0) info = 3; + else if(*kl<0) info = 4; + else if(*ku<0) info = 5; + else if(*lda<coeff_rows) info = 8; + else if(*incx==0) info = 10; + else if(*incy==0) info = 13; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6); + + if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1))) + return 0; + + int actual_m = *m; + int actual_n = *n; + if(OP(*trans)!=NOTR) + std::swap(actual_m,actual_n); + + Scalar* actual_x = get_compact_vector(x,actual_n,*incx); + Scalar* actual_y = get_compact_vector(y,actual_m,*incy); + + if(beta!=Scalar(1)) + { + if(beta==Scalar(0)) vector(actual_y, actual_m).setZero(); + else vector(actual_y, actual_m) *= beta; + } + + MatrixType mat_coeffs(a,coeff_rows,*n,*lda); + + int nb = std::min(*n,(*m)+(*ku)); + for(int j=0; j<nb; ++j) + { + int start = std::max(0,j - *ku); + int end = std::min((*m)-1,j + *kl); + int len = end - start + 1; + int offset = (*ku) - j + start; + if(OP(*trans)==NOTR) + vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); + else if(OP(*trans)==TR) + actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); + else + actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); + } + + if(actual_x!=x) delete[] actual_x; + if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); + + return 0; +} + +#if 0 +/** TBMV performs one of the matrix-vector operations + * + * x := A*x, or x := A'*x, + * + * where x is an n element vector and A is an n by n unit, or non-unit, + * upper or lower triangular band matrix, with ( k + 1 ) diagonals. + */ +int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *opa, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) +{ + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* x = reinterpret_cast<Scalar*>(px); + int coeff_rows = *k + 1; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*k<0) info = 5; + else if(*lda<coeff_rows) info = 7; + else if(*incx==0) info = 9; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TBMV ",&info,6); + + if(*n==0) + return 0; + + int actual_n = *n; + + Scalar* actual_x = get_compact_vector(x,actual_n,*incx); + + MatrixType mat_coeffs(a,coeff_rows,*n,*lda); + + int ku = UPLO(*uplo)==UPPER ? *k : 0; + int kl = UPLO(*uplo)==LOWER ? *k : 0; + + for(int j=0; j<*n; ++j) + { + int start = std::max(0,j - ku); + int end = std::min((*m)-1,j + kl); + int len = end - start + 1; + int offset = (ku) - j + start; + + if(OP(*trans)==NOTR) + vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len); + else if(OP(*trans)==TR) + actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value(); + else + actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value(); + } + + if(actual_x!=x) delete[] actual_x; + if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy); + + return 0; +} +#endif + +/** DTBSV solves one of the systems of equations + * + * A*x = b, or A'*x = b, + * + * where b and x are n element vectors and A is an n by n unit, or + * non-unit, upper or lower triangular band matrix, with ( k + 1 ) + * diagonals. + * + * No test for singularity or near-singularity is included in this + * routine. Such tests must be performed before calling this routine. + */ +int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *op, char *diag, int *n, int *k, RealScalar *pa, int *lda, RealScalar *px, int *incx) +{ + typedef void (*functype)(int, int, const Scalar *, int, Scalar *); + static functype func[16]; + + static bool init = false; + if(!init) + { + for(int k=0; k<16; ++k) + func[k] = 0; + + func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,ColMajor>::run); + func[TR | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,RowMajor>::run); + func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,Conj, Scalar,RowMajor>::run); + + func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|0, Scalar,false,Scalar,ColMajor>::run); + func[TR | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,false,Scalar,RowMajor>::run); + func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|0, Scalar,Conj, Scalar,RowMajor>::run); + + func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,ColMajor>::run); + func[TR | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,RowMajor>::run); + func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); + + func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Lower|UnitDiag,Scalar,false,Scalar,ColMajor>::run); + func[TR | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,false,Scalar,RowMajor>::run); + func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::band_solve_triangular_selector<int,Upper|UnitDiag,Scalar,Conj, Scalar,RowMajor>::run); + + init = true; + } + + Scalar* a = reinterpret_cast<Scalar*>(pa); + Scalar* x = reinterpret_cast<Scalar*>(px); + int coeff_rows = *k+1; + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*op)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*k<0) info = 5; + else if(*lda<coeff_rows) info = 7; + else if(*incx==0) info = 9; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TBSV ",&info,6); + + if(*n==0 || (*k==0 && DIAG(*diag)==UNIT)) + return 0; + + int actual_n = *n; + + Scalar* actual_x = get_compact_vector(x,actual_n,*incx); + + int code = OP(*op) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + if(code>=16 || func[code]==0) + return 0; + + func[code](*n, *k, a, *lda, actual_x); + + if(actual_x!=x) delete[] copy_back(actual_x,x,actual_n,*incx); + + return 0; +} + +/** DTPMV performs one of the matrix-vector operations + * + * x := A*x, or x := A'*x, + * + * where x is an n element vector and A is an n by n unit, or non-unit, + * upper or lower triangular matrix, supplied in packed form. + */ +int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) +{ + typedef void (*functype)(int, const Scalar*, const Scalar*, Scalar*, Scalar); + static functype func[16]; + + static bool init = false; + if(!init) + { + for(int k=0; k<16; ++k) + func[k] = 0; + + func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|0, Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|0, Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); + + func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Lower|UnitDiag,Scalar,false,Scalar,false,ColMajor>::run); + func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,false,Scalar,false,RowMajor>::run); + func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_matrix_vector_product<int,Upper|UnitDiag,Scalar,Conj, Scalar,false,RowMajor>::run); + + init = true; + } + + Scalar* ap = reinterpret_cast<Scalar*>(pap); + Scalar* x = reinterpret_cast<Scalar*>(px); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*incx==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TPMV ",&info,6); + + if(*n==0) + return 1; + + Scalar* actual_x = get_compact_vector(x,*n,*incx); + Matrix<Scalar,Dynamic,1> res(*n); + res.setZero(); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + if(code>=16 || func[code]==0) + return 0; + + func[code](*n, ap, actual_x, res.data(), Scalar(1)); + + copy_back(res.data(),x,*n,*incx); + if(actual_x!=x) delete[] actual_x; + + return 1; +} + +/** DTPSV solves one of the systems of equations + * + * A*x = b, or A'*x = b, + * + * where b and x are n element vectors and A is an n by n unit, or + * non-unit, upper or lower triangular matrix, supplied in packed form. + * + * No test for singularity or near-singularity is included in this + * routine. Such tests must be performed before calling this routine. + */ +int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *opa, char *diag, int *n, RealScalar *pap, RealScalar *px, int *incx) +{ + typedef void (*functype)(int, const Scalar*, Scalar*); + static functype func[16]; + + static bool init = false; + if(!init) + { + for(int k=0; k<16; ++k) + func[k] = 0; + + func[NOTR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,ColMajor>::run); + func[TR | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,RowMajor>::run); + func[ADJ | (UP << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, Conj, RowMajor>::run); + + func[NOTR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|0, false,ColMajor>::run); + func[TR | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, false,RowMajor>::run); + func[ADJ | (LO << 2) | (NUNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|0, Conj, RowMajor>::run); + + func[NOTR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,ColMajor>::run); + func[TR | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,RowMajor>::run); + func[ADJ | (UP << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,Conj, RowMajor>::run); + + func[NOTR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Lower|UnitDiag,false,ColMajor>::run); + func[TR | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,false,RowMajor>::run); + func[ADJ | (LO << 2) | (UNIT << 3)] = (internal::packed_triangular_solve_vector<Scalar,Scalar,int,OnTheLeft, Upper|UnitDiag,Conj, RowMajor>::run); + + init = true; + } + + Scalar* ap = reinterpret_cast<Scalar*>(pap); + Scalar* x = reinterpret_cast<Scalar*>(px); + + int info = 0; + if(UPLO(*uplo)==INVALID) info = 1; + else if(OP(*opa)==INVALID) info = 2; + else if(DIAG(*diag)==INVALID) info = 3; + else if(*n<0) info = 4; + else if(*incx==0) info = 7; + if(info) + return xerbla_(SCALAR_SUFFIX_UP"TPSV ",&info,6); + + Scalar* actual_x = get_compact_vector(x,*n,*incx); + + int code = OP(*opa) | (UPLO(*uplo) << 2) | (DIAG(*diag) << 3); + func[code](*n, ap, actual_x); + + if(actual_x!=x) delete[] copy_back(actual_x,x,*n,*incx); + + return 1; +} + |